These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 26688819)

  • 1. Cofunctional Subpathways Were Regulated by Transcription Factor with Common Motif, Common Family, or Common Tissue.
    Su F; Shang D; Xu Y; Feng L; Yang H; Liu B; Su S; Chen L; Li X
    Biomed Res Int; 2015; 2015():780357. PubMed ID: 26688819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritization of rheumatoid arthritis risk subpathways based on global immune subpathway interaction network and random walk strategy.
    Lv W; Wang Q; Chen H; Jiang Y; Zheng J; Shi M; Xu Y; Han J; Li C; Zhang R
    Mol Biosyst; 2015 Nov; 11(11):2986-97. PubMed ID: 26289534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissection of human MiRNA regulatory influence to subpathway.
    Li X; Jiang W; Li W; Lian B; Wang S; Liao M; Chen X; Wang Y; Lv Y; Wang S; Yang L
    Brief Bioinform; 2012 Mar; 13(2):175-86. PubMed ID: 21908864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene.
    Jung D; Hagenbuch B; Fried M; Meier PJ; Kullak-Ublick GA
    Am J Physiol Gastrointest Liver Physiol; 2004 May; 286(5):G752-61. PubMed ID: 14701722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the network of drugs and their affected metabolic subpathways.
    Li C; Shang D; Wang Y; Li J; Han J; Wang S; Yao Q; Wang Y; Zhang Y; Zhang C; Xu Y; Jiang W; Li X
    PLoS One; 2012; 7(10):e47326. PubMed ID: 23112813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional regulation of the human Liver X Receptor α gene by Hepatocyte Nuclear Factor 4α.
    Theofilatos D; Anestis A; Hashimoto K; Kardassis D
    Biochem Biophys Res Commun; 2016 Jan; 469(3):573-9. PubMed ID: 26692490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The implications of relationships between human diseases and metabolic subpathways.
    Li X; Li C; Shang D; Li J; Han J; Miao Y; Wang Y; Wang Q; Li W; Wu C; Zhang Y; Li X; Yao Q
    PLoS One; 2011; 6(6):e21131. PubMed ID: 21695054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription of the human microsomal epoxide hydrolase gene (EPHX1) is regulated by an HNF-4α/CAR/RXR/PSF complex.
    Peng H; Zhu QS; Zhong S; Levy D
    Biochim Biophys Acta; 2013 Oct; 1829(10):1000-9. PubMed ID: 23714182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation.
    Plevin MJ; Mills MM; Ikura M
    Trends Biochem Sci; 2005 Feb; 30(2):66-9. PubMed ID: 15691650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An equilibrium partitioning model connecting gene expression and cis-motif content.
    Mellor J; DeLisi C
    Bioinformatics; 2006 Jul; 22(14):e368-74. PubMed ID: 16873495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the far-upstream enhancer of the rat alpha-fetoprotein gene by members of the ROR alpha, Rev-erb alpha, and Rev-erb beta groups of monomeric orphan nuclear receptors.
    Bois-Joyeux B; Chauvet C; Nacer-Chérif H; Bergeret W; Mazure N; Giguère V; Laudet V; Danan JL
    DNA Cell Biol; 2000 Oct; 19(10):589-99. PubMed ID: 11058961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PreDREM: a database of predicted DNA regulatory motifs from 349 human cell and tissue samples.
    Zheng Y; Li X; Hu H
    Database (Oxford); 2015; 2015():. PubMed ID: 25725063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A widespread role of the motif environment in transcription factor binding across diverse protein families.
    Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y
    Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities.
    Narasimhan K; Lambert SA; Yang AW; Riddell J; Mnaimneh S; Zheng H; Albu M; Najafabadi HS; Reece-Hoyes JS; Fuxman Bass JI; Walhout AJ; Weirauch MT; Hughes TR
    Elife; 2015 Apr; 4():. PubMed ID: 25905672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription factor and microRNA-regulated network motifs for cancer and signal transduction networks.
    Hsieh WT; Tzeng KR; Ciou JS; Tsai JJ; Kurubanjerdjit N; Huang CH; Ng KL
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S5. PubMed ID: 25707690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues.
    Yu X; Lin J; Zack DJ; Qian J
    Nucleic Acids Res; 2006; 34(17):4925-36. PubMed ID: 16982645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions.
    Zhang J; Le TD; Liu L; He J; Li J
    Gene; 2016 Feb; 577(1):55-64. PubMed ID: 26611531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring coregulation of transcription factors and microRNAs in breast cancer.
    Wu JH; Sun YJ; Hsieh PH; Shieh GS
    Gene; 2013 Apr; 518(1):139-44. PubMed ID: 23246694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.