These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. Sevilla F; Camejo D; Ortiz-Espín A; Calderón A; Lázaro JJ; Jiménez A J Exp Bot; 2015 May; 66(10):2945-55. PubMed ID: 25873657 [TBL] [Abstract][Full Text] [Related]
4. Interplay between protein carbonylation and nitrosylation in plants. Lounifi I; Arc E; Molassiotis A; Job D; Rajjou L; Tanou G Proteomics; 2013 Feb; 13(3-4):568-78. PubMed ID: 23034931 [TBL] [Abstract][Full Text] [Related]
5. A direct way of redox sensing. Benoit R; Auer M RNA Biol; 2011; 8(1):18-23. PubMed ID: 21220941 [TBL] [Abstract][Full Text] [Related]
6. Biochemical basis of sulphenomics: how protein sulphenic acids may be stabilized by the protein microenvironment. Trost P; Fermani S; Calvaresi M; Zaffagnini M Plant Cell Environ; 2017 Apr; 40(4):483-490. PubMed ID: 27390911 [TBL] [Abstract][Full Text] [Related]
7. Post-Translational Modifications to Cysteine Residues in Plant Proteins and Their Impact on the Regulation of Metabolism and Signal Transduction. Boutin C; Clément C; Rivoal J Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337338 [TBL] [Abstract][Full Text] [Related]
9. Cysteines under ROS attack in plants: a proteomics view. Akter S; Huang J; Waszczak C; Jacques S; Gevaert K; Van Breusegem F; Messens J J Exp Bot; 2015 May; 66(10):2935-44. PubMed ID: 25750420 [TBL] [Abstract][Full Text] [Related]
10. Oxidative post-translational modifications of cysteine residues in plant signal transduction. Waszczak C; Akter S; Jacques S; Huang J; Messens J; Van Breusegem F J Exp Bot; 2015 May; 66(10):2923-34. PubMed ID: 25750423 [TBL] [Abstract][Full Text] [Related]
11. Redox proteomics: from bench to bedside. Ckless K Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188 [TBL] [Abstract][Full Text] [Related]
12. The emerging roles of protein glutathionylation in chloroplasts. Zaffagnini M; Bedhomme M; Lemaire SD; Trost P Plant Sci; 2012 Apr; 185-186():86-96. PubMed ID: 22325869 [TBL] [Abstract][Full Text] [Related]
13. The redox switch: dynamic regulation of protein function by cysteine modifications. Spadaro D; Yun BW; Spoel SH; Chu C; Wang YQ; Loake GJ Physiol Plant; 2010 Apr; 138(4):360-71. PubMed ID: 19912563 [TBL] [Abstract][Full Text] [Related]
14. Cysteine-mediated redox signalling in the mitochondria. Bak DW; Weerapana E Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845 [TBL] [Abstract][Full Text] [Related]
15. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. Rinalducci S; Murgiano L; Zolla L J Exp Bot; 2008; 59(14):3781-801. PubMed ID: 18977746 [TBL] [Abstract][Full Text] [Related]
16. A recent advance in the intracellular and extracellular redox post-translational modification of proteins in plants. Ruiz-May E; Segura-Cabrera A; Elizalde-Contreras JM; Shannon LM; Loyola-Vargas VM J Mol Recognit; 2019 Jan; 32(1):e2754. PubMed ID: 30033658 [TBL] [Abstract][Full Text] [Related]
17. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Biteau B; Labarre J; Toledano MB Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471 [TBL] [Abstract][Full Text] [Related]
19. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics. Bykova NV; Rampitsch C Proteomics; 2013 Feb; 13(3-4):579-96. PubMed ID: 23197359 [TBL] [Abstract][Full Text] [Related]
20. Protein redox modification as a cellular defense mechanism against tissue ischemic injury. Yan LJ Oxid Med Cell Longev; 2014; 2014():343154. PubMed ID: 24883175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]