BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 26689101)

  • 1. Multiple Gene Repression in Cyanobacteria Using CRISPRi.
    Yao L; Cengic I; Anfelt J; Hudson EP
    ACS Synth Biol; 2016 Mar; 5(3):207-12. PubMed ID: 26689101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of CRISPR Interference for Metabolic Engineering of the Heterocyst-Forming Multicellular Cyanobacterium Anabaena sp. PCC 7120.
    Higo A; Isu A; Fukaya Y; Ehira S; Hisabori T
    Plant Cell Physiol; 2018 Jan; 59(1):119-127. PubMed ID: 29112727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens.
    Kim SK; Kim H; Ahn WC; Park KH; Woo EJ; Lee DH; Lee SG
    ACS Synth Biol; 2017 Jul; 6(7):1273-1282. PubMed ID: 28375596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Reversibly Induced CRISPRi System Targeting Photosystem II in the Cyanobacterium
    Liu D; Johnson VM; Pakrasi HB
    ACS Synth Biol; 2020 Jun; 9(6):1441-1449. PubMed ID: 32379958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi.
    Tao W; Lv L; Chen GQ
    Microb Cell Fact; 2017 Apr; 16(1):48. PubMed ID: 28381263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002.
    Gordon GC; Korosh TC; Cameron JC; Markley AL; Begemann MB; Pfleger BF
    Metab Eng; 2016 Nov; 38():170-179. PubMed ID: 27481676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.
    Cao Y; Li X; Li F; Song H
    ACS Synth Biol; 2017 Sep; 6(9):1679-1690. PubMed ID: 28616968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942.
    Huang CH; Shen CR; Li H; Sung LY; Wu MY; Hu YC
    Microb Cell Fact; 2016 Nov; 15(1):196. PubMed ID: 27846887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and implementation of a Type I-C CRISPR-based programmable repression system for
    Geslewitz WE; Cardenas A; Zhou X; Zhang Y; Criss AK; Seifert HS
    mBio; 2024 Feb; 15(2):e0302523. PubMed ID: 38126782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the CRISPRi system to repress sepF expression in Mycobacterium smegmatis.
    Xiao J; Jia H; Pan L; Li Z; Lv L; Du B; Zhang L; Du F; Huang Y; Cao T; Sun Q; Wei R; Xing A; Zhang Z
    Infect Genet Evol; 2019 Aug; 72():183-190. PubMed ID: 31242975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system.
    Chang Y; Su T; Qi Q; Liang Q
    Microb Cell Fact; 2016 Nov; 15(1):195. PubMed ID: 27842593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Repression of Key Photosynthetic Processes Using Cas12a CRISPR Interference in the Fast-Growing Cyanobacterium
    Knoot CJ; Biswas S; Pakrasi HB
    ACS Synth Biol; 2020 Jan; 9(1):132-143. PubMed ID: 31829621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas systems in multicellular cyanobacteria.
    Hou S; Brenes-Álvarez M; Reimann V; Alkhnbashi OS; Backofen R; Muro-Pastor AM; Hess WR
    RNA Biol; 2019 Apr; 16(4):518-529. PubMed ID: 29995583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The New State of the Art: Cas9 for Gene Activation and Repression.
    La Russa MF; Qi LS
    Mol Cell Biol; 2015 Nov; 35(22):3800-9. PubMed ID: 26370509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repurposing the Endogenous Type I-E CRISPR/Cas System for Gene Repression in
    Qin Z; Yang Y; Yu S; Liu L; Chen Y; Chen J; Zhou J
    ACS Synth Biol; 2021 Jan; 10(1):84-93. PubMed ID: 33399467
    [No Abstract]   [Full Text] [Related]  

  • 18. A Cas12a-based CRISPR interference system for multigene regulation in mycobacteria.
    Fleck N; Grundner C
    J Biol Chem; 2021 Aug; 297(2):100990. PubMed ID: 34298016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPRi-dCas12a: A dCas12a-Mediated CRISPR Interference for Repression of Multiple Genes and Metabolic Engineering in Cyanobacteria.
    Choi SY; Woo HM
    ACS Synth Biol; 2020 Sep; 9(9):2351-2361. PubMed ID: 32379967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes.
    Yao L; Shabestary K; Björk SM; Asplund-Samuelsson J; Joensson HN; Jahn M; Hudson EP
    Nat Commun; 2020 Apr; 11(1):1666. PubMed ID: 32245970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.