These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26689157)

  • 21. Assessing the extent of bone degradation using glutamine deamidation in collagen.
    Wilson J; van Doorn NL; Collins MJ
    Anal Chem; 2012 Nov; 84(21):9041-8. PubMed ID: 23030643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on the mechanism of aspartic acid cleavage and glutamine deamidation in the acidic degradation of glucagon.
    Joshi AB; Sawai M; Kearney WR; Kirsch LE
    J Pharm Sci; 2005 Sep; 94(9):1912-27. PubMed ID: 16052557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of amino- and amide-15N glutamine enrichment with tertiary butyldimethylsilyl derivatives.
    Williams BD; Wolfe RR
    Biol Mass Spectrom; 1994 Nov; 23(11):682-8. PubMed ID: 7811757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deamidation of collagen.
    Hurtado PP; O'Connor PB
    Anal Chem; 2012 Mar; 84(6):3017-25. PubMed ID: 22283685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The relative rates of glutamine and asparagine deamidation in glucagon fragment 22-29 under acidic conditions.
    Joshi AB; Kirsch LE
    J Pharm Sci; 2002 Nov; 91(11):2331-45. PubMed ID: 12379918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides.
    Robinson NE; Robinson ZW; Robinson BR; Robinson AL; Robinson JA; Robinson ML; Robinson AB
    J Pept Res; 2004 May; 63(5):426-36. PubMed ID: 15140160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins.
    Wright HT
    Crit Rev Biochem Mol Biol; 1991; 26(1):1-52. PubMed ID: 1678690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deamidation as a consequence of beta-elimination of phosphopeptides.
    Karty JA; Reilly JP
    Anal Chem; 2005 Jul; 77(14):4673-6. PubMed ID: 16013888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A conventional procedure to reduce Asn deamidation artifacts during trypsin peptide mapping.
    Kori Y; Patel R; Neill A; Liu H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Jan; 1009-1010():107-13. PubMed ID: 26720699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An electrophoretic approach to screen for glutamine deamidation.
    Bae N; Yang JW; Sitte H; Pollak A; Marquez J; Lubec G
    Anal Biochem; 2012 Sep; 428(1):1-3. PubMed ID: 22640603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Why does Asn71 deamidate faster than Asn15 in the enzyme triosephosphate isomerase? Answers from microsecond molecular dynamics simulation and QM/MM free energy calculations.
    Ugur I; Marion A; Aviyente V; Monard G
    Biochemistry; 2015 Feb; 54(6):1429-39. PubMed ID: 25602614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of immunoreactive material in mammoth fossils.
    Schweitzer M; Hill CL; Asara JM; Lane WS; Pincus SH
    J Mol Evol; 2002 Dec; 55(6):696-705. PubMed ID: 12486528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of primary structure deamidation rates of asparaginyl and glutaminyl peptides through steric and catalytic effects.
    Robinson NE; Robinson AB
    J Pept Res; 2004 May; 63(5):437-48. PubMed ID: 15140161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization.
    Wakankar AA; Borchardt RT
    J Pharm Sci; 2006 Nov; 95(11):2321-36. PubMed ID: 16960822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A modified peptide mapping strategy for quantifying site-specific deamidation by electrospray time-of-flight mass spectrometry.
    Stroop SD
    Rapid Commun Mass Spectrom; 2007; 21(6):830-6. PubMed ID: 17294517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Asparaginyl deamidation in two glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae.
    DeLuna A; Quezada H; Gómez-Puyou A; González A
    Biochem Biophys Res Commun; 2005 Mar; 328(4):1083-90. PubMed ID: 15707988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomolecular histology as a novel proxy for ancient DNA and protein sequence preservation.
    Anderson LA
    Ecol Evol; 2022 Dec; 12(12):e9518. PubMed ID: 36518622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methods for the quantitative comparison of molecular estimates of clade age and the fossil record.
    Clarke JA; Boyd CA
    Syst Biol; 2015 Jan; 64(1):25-41. PubMed ID: 25281846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches.
    Lukoschek V; Scott Keogh J; Avise JC
    Syst Biol; 2012 Jan; 61(1):22-43. PubMed ID: 21840843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asparagine deamidation and the role of higher order protein structure.
    Rivers J; McDonald L; Edwards IJ; Beynon RJ
    J Proteome Res; 2008 Mar; 7(3):921-7. PubMed ID: 18247555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.