These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 26689370)
1. The Identification of Two Head Smut Resistance-Related QTL in Maize by the Joint Approach of Linkage Mapping and Association Analysis. Li YX; Wu X; Jaqueth J; Zhang D; Cui D; Li C; Hu G; Dong H; Song YC; Shi YS; Wang T; Li B; Li Y PLoS One; 2015; 10(12):e0145549. PubMed ID: 26689370 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide association study (GWAS) of resistance to head smut in maize. Wang M; Yan J; Zhao J; Song W; Zhang X; Xiao Y; Zheng Y Plant Sci; 2012 Nov; 196():125-31. PubMed ID: 23017907 [TBL] [Abstract][Full Text] [Related]
3. Combination of Linkage Mapping, GWAS, and GP to Dissect the Genetic Basis of Common Rust Resistance in Tropical Maize Germplasm. Kibe M; Nyaga C; Nair SK; Beyene Y; Das B; M SL; Bright JM; Makumbi D; Kinyua J; Olsen MS; Prasanna BM; Gowda M Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899999 [TBL] [Abstract][Full Text] [Related]
4. Genome-Wide Association Study and QTL Mapping Reveal Genomic Loci Associated with Fusarium Ear Rot Resistance in Tropical Maize Germplasm. Chen J; Shrestha R; Ding J; Zheng H; Mu C; Wu J; Mahuku G G3 (Bethesda); 2016 Dec; 6(12):3803-3815. PubMed ID: 27742723 [TBL] [Abstract][Full Text] [Related]
5. Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize. Wu Y; Zhou Z; Dong C; Chen J; Ding J; Zhang X; Mu C; Chen Y; Li X; Li H; Han Y; Wang R; Sun X; Li J; Dai X; Song W; Chen W; Wu J BMC Genomics; 2020 May; 21(1):357. PubMed ID: 32398006 [TBL] [Abstract][Full Text] [Related]
6. Combining powers of linkage and association mapping for precise dissection of QTL controlling resistance to gray leaf spot disease in maize (Zea mays L.). Mammadov J; Sun X; Gao Y; Ochsenfeld C; Bakker E; Ren R; Flora J; Wang X; Kumpatla S; Meyer D; Thompson S BMC Genomics; 2015 Nov; 16():916. PubMed ID: 26555731 [TBL] [Abstract][Full Text] [Related]
7. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. Zhou Z; Zhang C; Zhou Y; Hao Z; Wang Z; Zeng X; Di H; Li M; Zhang D; Yong H; Zhang S; Weng J; Li X BMC Genomics; 2016 Mar; 17():178. PubMed ID: 26940065 [TBL] [Abstract][Full Text] [Related]
8. Identification of QTL for maize resistance to common smut by using recombinant inbred lines developed from the Chinese hybrid Yuyu22. Ding JQ; Wang XM; Chander S; Li JS J Appl Genet; 2008; 49(2):147-54. PubMed ID: 18436989 [TBL] [Abstract][Full Text] [Related]
9. Dissecting the genetic architecture of Fusarium verticillioides seed rot resistance in maize by combining QTL mapping and genome-wide association analysis. Ju M; Zhou Z; Mu C; Zhang X; Gao J; Liang Y; Chen J; Wu Y; Li X; Wang S; Wen J; Yang L; Wu J Sci Rep; 2017 Apr; 7():46446. PubMed ID: 28422143 [TBL] [Abstract][Full Text] [Related]
10. Confirmation and Fine Mapping of a Major QTL for Aflatoxin Resistance in Maize Using a Combination of Linkage and Association Mapping. Zhang Y; Cui M; Zhang J; Zhang L; Li C; Kan X; Sun Q; Deng D; Yin Z Toxins (Basel); 2016 Sep; 8(9):. PubMed ID: 27598199 [TBL] [Abstract][Full Text] [Related]
12. Fine mapping of Msv1, a major QTL for resistance to Maize Streak Virus leads to development of production markers for breeding pipelines. Nair SK; Babu R; Magorokosho C; Mahuku G; Semagn K; Beyene Y; Das B; Makumbi D; Lava Kumar P; Olsen M; Boddupalli PM Theor Appl Genet; 2015 Sep; 128(9):1839-54. PubMed ID: 26081946 [TBL] [Abstract][Full Text] [Related]
13. Molecular mapping of the major resistance quantitative trait locus qHS2.09 with simple sequence repeat and single nucleotide polymorphism markers in maize. Weng J; Liu X; Wang Z; Wang J; Zhang L; Hao Z; Xie C; Li M; Zhang D; Bai L; Liu C; Zhang S; Li X Phytopathology; 2012 Jul; 102(7):692-9. PubMed ID: 22439860 [TBL] [Abstract][Full Text] [Related]
14. Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Chen Y; Chao Q; Tan G; Zhao J; Zhang M; Ji Q; Xu M Theor Appl Genet; 2008 Nov; 117(8):1241-52. PubMed ID: 18762906 [TBL] [Abstract][Full Text] [Related]
15. High-density mapping for gray leaf spot resistance using two related tropical maize recombinant inbred line populations. Chen L; Liu L; Li Z; Zhang Y; Kang MS; Wang Y; Fan X Mol Biol Rep; 2021 Apr; 48(4):3379-3392. PubMed ID: 33890197 [TBL] [Abstract][Full Text] [Related]
16. Identification and fine mapping of a major QTL (qRtsc8-1) conferring resistance to maize tar spot complex and validation of production markers in breeding lines. Ren J; Wu P; Huestis GM; Zhang A; Qu J; Liu Y; Zheng H; Alakonya AE; Dhliwayo T; Olsen M; San Vicente F; Prasanna BM; Chen J; Zhang X Theor Appl Genet; 2022 May; 135(5):1551-1563. PubMed ID: 35181836 [TBL] [Abstract][Full Text] [Related]
17. Limits on the reproducibility of marker associations with southern leaf blight resistance in the maize nested association mapping population. Bian Y; Yang Q; Balint-Kurti PJ; Wisser RJ; Holland JB BMC Genomics; 2014 Dec; 15(1):1068. PubMed ID: 25475173 [TBL] [Abstract][Full Text] [Related]
18. Mapping QTL conferring resistance in maize to gray leaf spot disease caused by Cercospora zeina. Berger DK; Carstens M; Korsman JN; Middleton F; Kloppers FJ; Tongoona P; Myburg AA BMC Genet; 2014 May; 15():60. PubMed ID: 24885661 [TBL] [Abstract][Full Text] [Related]
19. New QTL for resistance to Puccinia polysora Underw in maize. Deng C; Li H; Li Z; Tian Z; Chen J; Chen G; Zhang X; Ding J; Chang Y J Appl Genet; 2019 May; 60(2):147-150. PubMed ID: 30838524 [TBL] [Abstract][Full Text] [Related]
20. Combined linkage and association mapping identifies a major QTL (qRtsc8-1), conferring tar spot complex resistance in maize. Mahuku G; Chen J; Shrestha R; Narro LA; Guerrero KV; Arcos AL; Xu Y Theor Appl Genet; 2016 Jun; 129(6):1217-29. PubMed ID: 26971113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]