BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

731 related articles for article (PubMed ID: 26689462)

  • 41. Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes.
    Yang J; Kim DH; Hendricks JL; Leach M; Northey R; Martin DC
    Acta Biomater; 2005 Jan; 1(1):125-36. PubMed ID: 16701786
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monolithic and Scalable Au Nanorod Substrates Improve PEDOT-Metal Adhesion and Stability in Neural Electrodes.
    Ganji M; Hossain L; Tanaka A; Thunemann M; Halgren E; Gilja V; Devor A; Dayeh SA
    Adv Healthc Mater; 2018 Nov; 7(22):e1800923. PubMed ID: 30369088
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio.
    Baranauskas G; Maggiolini E; Castagnola E; Ansaldo A; Mazzoni A; Angotzi GN; Vato A; Ricci D; Panzeri S; Fadiga L
    J Neural Eng; 2011 Dec; 8(6):066013. PubMed ID: 22064890
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Active Control of Dye Release for Neuronal Tracing Using PEDOT-PSS Coated Electrodes.
    Heizmann S; Kilias A; Ruther P; Egert U; Asplund M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):299-306. PubMed ID: 27831884
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stable in-vivo electrochemical sensing of tonic serotonin levels using PEDOT/CNT-coated glassy carbon flexible microelectrode arrays.
    Castagnola E; Robbins EM; Krahe DD; Wu B; Pwint MY; Cao Q; Cui XT
    Biosens Bioelectron; 2023 Jun; 230():115242. PubMed ID: 36989659
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Neural Sensor with a Nanocomposite Interface for the Study of Spike Characteristics of Hippocampal Neurons under Learning Training.
    Xu S; Deng Y; Luo J; Liu Y; He E; Yang Y; Zhang K; Sha L; Dai Y; Ming T; Song Y; Jing L; Zhuang C; Xu Q; Cai X
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity.
    Vomero M; Castagnola E; Ciarpella F; Maggiolini E; Goshi N; Zucchini E; Carli S; Fadiga L; Kassegne S; Ricci D
    Sci Rep; 2017 Jan; 7():40332. PubMed ID: 28084398
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long term performance of porous platinum coated neural electrodes.
    Leber M; Bhandari R; Mize J; Warren DJ; Shandhi MMH; Solzbacher F; Negi S
    Biomed Microdevices; 2017 Sep; 19(3):62. PubMed ID: 28688070
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of carbon nanotube and conducting polymer coated microelectrodes on single-unit recordings in vitro.
    Charkhkar H; Knaack GL; Mandal HS; Keefer EW; Pancrazio JJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():469-73. PubMed ID: 25569998
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of adhesive conducting PEDOT-MeOH:PSS/PDA neural interface via electropolymerization for ultrasmall implantable neural microelectrodes.
    Tian F; Yu J; Wang W; Zhao D; Cao J; Zhao Q; Wang F; Yang H; Wu Z; Xu J; Lu B
    J Colloid Interface Sci; 2023 May; 638():339-348. PubMed ID: 36746052
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrodeposited platinum-iridium coating improves in vivo recording performance of chronically implanted microelectrode arrays.
    Cassar IR; Yu C; Sambangi J; Lee CD; Whalen JJ; Petrossians A; Grill WM
    Biomaterials; 2019 Jun; 205():120-132. PubMed ID: 30925400
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanotunnels within Poly(3,4-ethylenedioxythiophene)-Carbon Nanotube Composite for Highly Sensitive Neural Interfacing.
    Chen N; Luo B; Patil AC; Wang J; Gammad GGL; Yi Z; Liu X; Yen SC; Ramakrishna S; Thakor NV
    ACS Nano; 2020 Jul; 14(7):8059-8073. PubMed ID: 32579337
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fractal form PEDOT/Au assemblies as thin-film neural interface materials.
    Krukiewicz K; Chudy M; Vallejo-Giraldo C; Skorupa M; Więcławska D; Turczyn R; Biggs M
    Biomed Mater; 2018 Jun; 13(5):054102. PubMed ID: 29633721
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electropolymerization processing of side-chain engineered EDOT for high performance microelectrode arrays.
    Ghazal M; Susloparova A; Lefebvre C; Daher Mansour M; Ghodhbane N; Melot A; Scholaert C; Guérin D; Janel S; Barois N; Colin M; Buée L; Yger P; Halliez S; Coffinier Y; Pecqueur S; Alibart F
    Biosens Bioelectron; 2023 Oct; 237():115538. PubMed ID: 37506488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemical deposition and evaluation of electrically conductive polymer coating on biodegradable magnesium implants for neural applications.
    Sebaa MA; Dhillon S; Liu H
    J Mater Sci Mater Med; 2013 Feb; 24(2):307-16. PubMed ID: 23104085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reactive Amine Functionalized Microelectrode Arrays Provide Short-Term Benefit but Long-Term Detriment to
    Sturgill BS; Hernandez-Reynoso AG; Druschel LN; Smith TJ; Boucher PE; Hoeferlin GF; Thai TTD; Jiang MS; Hess JL; Alam NN; Menendez DM; Duncan JL; Cogan SF; Pancrazio JJ; Capadona JR
    ACS Appl Bio Mater; 2024 Feb; 7(2):1052-1063. PubMed ID: 38290529
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct in Vivo Electrochemical Detection of Resting Dopamine Using Poly(3,4-ethylenedioxythiophene)/Carbon Nanotube Functionalized Microelectrodes.
    Taylor IM; Patel NA; Freedman NC; Castagnola E; Cui XT
    Anal Chem; 2019 Oct; 91(20):12917-12927. PubMed ID: 31512849
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study.
    Boehler C; Kleber C; Martini N; Xie Y; Dryg I; Stieglitz T; Hofmann UG; Asplund M
    Biomaterials; 2017 Jun; 129():176-187. PubMed ID: 28343004
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tuning Microelectrodes' Impedance to Improve Fast Ripples Recording.
    Mousavi H; Dauly G; Dieuset G; El Merhie A; Ismailova E; Wendling F; Al Harrach M
    Bioengineering (Basel); 2024 Jan; 11(1):. PubMed ID: 38275582
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes.
    Hara SA; Kim BJ; Kuo JT; Lee CD; Meng E; Pikov V
    J Neural Eng; 2016 Dec; 13(6):066020. PubMed ID: 27819256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.