BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 26689470)

  • 1. Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro osteoblast-osteoclast-endothelial cell co-culture study.
    Forte L; Torricelli P; Boanini E; Gazzano M; Rubini K; Fini M; Bigi A
    Acta Biomater; 2016 Mar; 32():298-308. PubMed ID: 26689470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling the role of hydroxyapatite and hydroxyapatite/silver composite in osteoblast-like cell mineralization: An exploration through their viscoelastic properties.
    García-Ortiz D; Martínez-Sanmiguel JJ; Zárate Triviño DG; Rodríguez-Padilla C; Salceda-Delgado G; Menchaca JL; Bedolla MA; Rodríguez-Nieto M
    Bone; 2024 Jul; 184():117090. PubMed ID: 38579924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supraphysiological Levels of Quercetin Glycosides are Required to Alter Mineralization in Saos2 Cells.
    Nash LA; Peters SJ; Sullivan PJ; Ward WE
    Int J Environ Res Public Health; 2016 Apr; 13(5):. PubMed ID: 27136576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcite incorporated in silica/collagen xerogels mediates calcium release and enhances osteoblast proliferation and differentiation.
    Rößler S; Unbehau R; Gemming T; Kruppke B; Wiesmann HP; Hanke T
    Sci Rep; 2020 Jan; 10(1):118. PubMed ID: 31924823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal preparation and characterization of ultralong strontium-substituted hydroxyapatite whiskers using acetamide as homogeneous precipitation reagent.
    Xu J; Yang Y; Wan R; Shen Y; Zhang W
    ScientificWorldJournal; 2014; 2014():863137. PubMed ID: 24592192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of quercetin on the DNA methylation pattern in tumor therapy: an updated review.
    Wang Q; Ma C; Wang N; Mao H
    Food Funct; 2024 Apr; 15(8):3897-3907. PubMed ID: 38535893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro evaluation of bone cell response to novel 3D-printable nanocomposite biomaterials for bone reconstruction.
    Haghpanah Z; Mondal D; Momenbeitollahi N; Mohsenkhani S; Zarshenas K; Jin Y; Watson M; Willett T; Gorbet M
    J Biomed Mater Res A; 2024 Apr; ():. PubMed ID: 38619300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine.
    Yang D; Wang T; Long M; Li P
    Oxid Med Cell Longev; 2020; 2020():8825387. PubMed ID: 33488935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quercetin-Based Nanocomposites as a Tool to Improve Dental Disease Management.
    Angellotti G; Murgia D; Campisi G; De Caro V
    Biomedicines; 2020 Nov; 8(11):. PubMed ID: 33207706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quercetin rescued TNF-alpha-induced impairments in bone marrow-derived mesenchymal stem cell osteogenesis and improved osteoporosis in rats.
    Yuan Z; Min J; Zhao Y; Cheng Q; Wang K; Lin S; Luo J; Liu H
    Am J Transl Res; 2018; 10(12):4313-4321. PubMed ID: 30662673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quercetin Stimulates Bone Marrow Mesenchymal Stem Cell Differentiation through an Estrogen Receptor-Mediated Pathway.
    Pang XG; Cong Y; Bao NR; Li YG; Zhao JN
    Biomed Res Int; 2018; 2018():4178021. PubMed ID: 29736392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis.
    Song JE; Tripathy N; Lee DH; Park JH; Khang G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quercetin as an Agent for Protecting the Bone: A Review of the Current Evidence.
    Wong SK; Chin KY; Ima-Nirwana S
    Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32899435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological and mechanistic aspects of quercetin in osteoporosis.
    Deng TT; Ding WY; Lu XX; Zhang QH; Du JX; Wang LJ; Yang MN; Yin Y; Liu FJ
    Front Pharmacol; 2024; 15():1338951. PubMed ID: 38333006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Preparation and Effects of Organic-Inorganic Antioxidative Biomaterials for Bone Repair.
    Guo Q; Yang S; Ni G; Ji J; Luo M; Du W
    Biomedicines; 2023 Dec; 12(1):. PubMed ID: 38255177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and in vitro characteristics of biogenic-derived hydroxyapatite for bone remodeling applications.
    Ragini B; Kandhasamy S; Jacob JP; Vijayakumar S
    Bioprocess Biosyst Eng; 2024 Jan; 47(1):23-37. PubMed ID: 37952238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyapatite microbeads containing BMP-2 and quercetin fabricated via electrostatic spraying to encourage bone regeneration.
    Lee S; Park H; Oh JS; Byun K; Kim DY; Yun HS; Kang BJ
    Biomed Eng Online; 2023 Feb; 22(1):15. PubMed ID: 36803418
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Shiba F; Furusho H; Takata T; Shimizu R; Miyauchi M
    Int J Dent; 2022; 2022():7398924. PubMed ID: 36794024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Hybrid Polyphenol/Hydroxyapatite Nanomaterials with Anti-Radical Properties.
    Palierse E; Masse S; Laurent G; Le Griel P; Mosser G; Coradin T; Jolivalt C
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunomodulatory strategies for bone regeneration: A review from the perspective of disease types.
    Su N; Villicana C; Yang F
    Biomaterials; 2022 Jul; 286():121604. PubMed ID: 35667249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.