These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 2668950)
21. Antioxidant activity of L-ascorbic acid in wild-type and superoxide dismutase deficient strains of Saccharomyces cerevisiae. Saffi J; Sonego L; Varela QD; Salvador M Redox Rep; 2006; 11(4):179-84. PubMed ID: 16984741 [TBL] [Abstract][Full Text] [Related]
22. Changes in the protein synthesis pattern during a nutritional shift-down transition in Saccharomyces cerevisiae. Rodriguez F; Popolo L; Vai M; Lacanà E; Alberghina L Exp Cell Res; 1990 Apr; 187(2):315-9. PubMed ID: 2180735 [TBL] [Abstract][Full Text] [Related]
23. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669 [TBL] [Abstract][Full Text] [Related]
24. Assessment of the role of oxygen and mitochondria in heat shock induction of radiation and thermal resistance in Saccharomyces cerevisiae. Mitchel RE; Morrison DP Radiat Res; 1983 Oct; 96(1):113-7. PubMed ID: 6353475 [TBL] [Abstract][Full Text] [Related]
26. Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance. Rikhvanov EG; Fedoseeva IV; Varakina NN; Rusaleva TM; Fedyaeva AV Biochemistry (Mosc); 2014 Jan; 79(1):16-24. PubMed ID: 24512659 [TBL] [Abstract][Full Text] [Related]
27. Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae. Davidson JF; Schiestl RH J Bacteriol; 2001 Aug; 183(15):4580-7. PubMed ID: 11443093 [TBL] [Abstract][Full Text] [Related]
28. Yeast cys3 and gsh1 mutant cells display overlapping but non-identical symptoms of oxidative stress with regard to subcellular protein localization and CDP-DAG metabolism. Matiach A; Schröder-Köhne S Mol Genet Genomics; 2001 Nov; 266(3):481-96. PubMed ID: 11713678 [TBL] [Abstract][Full Text] [Related]
29. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255 [TBL] [Abstract][Full Text] [Related]
30. Effects of selenium on oxidative damage and antioxidant enzymes of eukaryotic cells: wine Saccharomyces cerevisiae. Talbi W; Ghazouani T; Braconi D; Ben Abdallah R; Raboudi F; Santucci A; Fattouch S J Appl Microbiol; 2019 Feb; 126(2):555-566. PubMed ID: 30408278 [TBL] [Abstract][Full Text] [Related]
31. Homocysteine- and cysteine-mediated growth defect is not associated with induction of oxidative stress response genes in yeast. Kumar A; John L; Alam MM; Gupta A; Sharma G; Pillai B; Sengupta S Biochem J; 2006 May; 396(1):61-9. PubMed ID: 16433631 [TBL] [Abstract][Full Text] [Related]
32. Lack of evidence of oxidative damage in antioxidant-deficient strains of Saccharomyces cerevisiae. Fortuniak A; Jakubowski W; Biliński T; Bartosz G Biochem Mol Biol Int; 1996 May; 38(6):1271-6. PubMed ID: 8739049 [TBL] [Abstract][Full Text] [Related]
33. Effect of lipid status on cytoplasmic and mitochondrial protein synthesis in anaerobic cultures of Saccharomyces cerevisiae. Gordon PA; Stewart PR J Gen Microbiol; 1972 Sep; 72(2):231-42. PubMed ID: 4562305 [No Abstract] [Full Text] [Related]
34. Identification of a novel stress-inducible glycoprotein in Saccharomyces cerevisiae. I. Preliminary characterization. Verma R; Iida H; Pardee AB J Biol Chem; 1988 Jun; 263(18):8569-75. PubMed ID: 3288618 [TBL] [Abstract][Full Text] [Related]
35. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron. Jensen LT; Culotta VC J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835 [TBL] [Abstract][Full Text] [Related]
36. Biotin uptake by cold-shocked cells, spheroplasts, and repressed cells of Saccharomyces cerevisiae: lack of feedback control. Cicmanec JF; Lichstein HC J Bacteriol; 1974 Sep; 119(3):718-25. PubMed ID: 4604165 [TBL] [Abstract][Full Text] [Related]
37. The role of glucose and aminoacid starvation in the sensitivity of protein and RNA synthesis to cycloheximide and erythromycin in the yeast Saccharomyces cerevisiae. Tassi F; Ferrero I; Donnini C; Marmiroli N Microbiologica; 1983 Jan; 6(1):9-18. PubMed ID: 6341782 [TBL] [Abstract][Full Text] [Related]
38. Effect of thiol reagents on extractability of protein from yeast. Shetty KJ; Kinsella JE Biotechnol Bioeng; 1978 May; 20(5):755-66. PubMed ID: 348246 [TBL] [Abstract][Full Text] [Related]
39. Efficacy of antioxidants in the yeast Saccharomyces cerevisiae correlates with their effects on protein thiols. Bednarska S; Leroy P; Zagulski M; Bartosz G Biochimie; 2008 Oct; 90(10):1476-85. PubMed ID: 18555025 [TBL] [Abstract][Full Text] [Related]
40. Antioxidant potential of anaerobic human plasma: role of serum albumin and thiols as scavengers of carbon radicals. Soriani M; Pietraforte D; Minetti M Arch Biochem Biophys; 1994 Jul; 312(1):180-8. PubMed ID: 8031126 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]