These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 26689691)

  • 41. Bone mass measurement: how, where, when and why?
    Delmas PD
    Int J Fertil Menopausal Stud; 1993; 38 Suppl 2():70-6. PubMed ID: 8252108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb.
    Dudley-Javoroski S; Petrie MA; McHenry CL; Amelon RE; Saha PK; Shields RK
    Osteoporos Int; 2016 Mar; 27(3):1149-1160. PubMed ID: 26395887
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative computed tomography in assessment of osteoporosis.
    Genant HK; Block JE; Steiger P; Glueer CC; Smith R
    Semin Nucl Med; 1987 Oct; 17(4):316-33. PubMed ID: 3317846
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bone morphology of the femur and tibia captured by statistical shape modelling predicts rapid bone loss in acute spinal cord injury patients.
    Varzi D; Coupaud SAF; Purcell M; Allan DB; Gregory JS; Barr RJ
    Bone; 2015 Dec; 81():495-501. PubMed ID: 26341577
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bone densitometry in orthopaedic practice.
    Mirsky EC; Einhorn TA
    J Bone Joint Surg Am; 1998 Nov; 80(11):1687-98. PubMed ID: 9840640
    [No Abstract]   [Full Text] [Related]  

  • 46. Osteoporosis after spinal cord injury.
    Jiang SD; Dai LY; Jiang LS
    Osteoporos Int; 2006 Feb; 17(2):180-92. PubMed ID: 16217589
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Progressive Sublesional Bone Loss Extends into the Second Decade After Spinal Cord Injury.
    Cirnigliaro CM; Myslinski MJ; Asselin P; Hobson JC; Specht A; La Fountaine MF; Kirshblum SC; Forrest GF; Dyson-Hudson T; Spungen AM; Bauman WA
    J Clin Densitom; 2019; 22(2):185-194. PubMed ID: 30503961
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies.
    Giangregorio L; McCartney N
    J Spinal Cord Med; 2006; 29(5):489-500. PubMed ID: 17274487
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adiponectin is associated with bone strength and fracture history in paralyzed men with spinal cord injury.
    Tan CO; Battaglino RA; Doherty AL; Gupta R; Lazzari AA; Garshick E; Zafonte R; Morse LR
    Osteoporos Int; 2014 Nov; 25(11):2599-607. PubMed ID: 24980185
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of opportunistic quantitative computed tomography in the evaluation of bone disease and risk of fracture in thalassemia major.
    Carnevale A; Pellegrino F; Bravi B; Gamberini MR; Gagliardi I; Reverberi R; Zatelli MC; Giganti M; Ambrosio MR
    Eur J Haematol; 2022 Dec; 109(6):648-655. PubMed ID: 36000276
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differences in bone mineral density, markers of bone turnover and extracellular matrix and daily life muscular activity among patients with recent motor-incomplete versus motor-complete spinal cord injury.
    Kostovski E; Hjeltnes N; Eriksen EF; Kolset SO; Iversen PO
    Calcif Tissue Int; 2015 Feb; 96(2):145-54. PubMed ID: 25539858
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigating comparability of quantitative computed tomography with dual energy x-ray absorptiometry in assessing bone mineral density of patients with chronic spinal cord injury.
    Haghighat Khah HR; Moradi N; Taheri T; Sanei Taheri M; Rayegani SM
    Spinal Cord; 2018 May; 56(5):487-493. PubMed ID: 29277840
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent methods for assessing osteoporosis and fracture risk.
    Imai K
    Recent Pat Endocr Metab Immune Drug Discov; 2014 Jan; 8(1):48-59. PubMed ID: 24438541
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual-energy X-ray absorptiometry of the calcaneus: comparison with vertebral dual-energy X-ray absorptiometry and quantitative computed tomography.
    Laval-Jeantet AM; Bergot C; Williams M; Davidson K; Laval-Jeantet M
    Calcif Tissue Int; 1995 Jan; 56(1):14-8. PubMed ID: 7796340
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploring the determinants of fracture risk among individuals with spinal cord injury.
    Lala D; Craven BC; Thabane L; Papaioannou A; Adachi JD; Popovic MR; Giangregorio LM
    Osteoporos Int; 2014 Jan; 25(1):177-85. PubMed ID: 23812595
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cross-Sectional Study of Knee Bone Mineral Density and Fragility Fractures in Patients with Neurological Injuries and Neuromuscular Disorders.
    Jr Al C; Dr P; Ac C; Aps C
    J Clin Densitom; 2022; 25(4):682-691. PubMed ID: 36175247
    [TBL] [Abstract][Full Text] [Related]  

  • 57. How can we measure bone quality?
    Hans D; Fuerst T; Lang T; Majumdar S; Lu Y; Genant HK; Glüer C
    Baillieres Clin Rheumatol; 1997 Aug; 11(3):495-515. PubMed ID: 9367034
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of low intensity vibration on bone and muscle in rats with spinal cord injury.
    Bramlett HM; Dietrich WD; Marcillo A; Mawhinney LJ; Furones-Alonso O; Bregy A; Peng Y; Wu Y; Pan J; Wang J; Guo XE; Bauman WA; Cardozo C; Qin W
    Osteoporos Int; 2014 Sep; 25(9):2209-19. PubMed ID: 24861907
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Zoledronic acid improves bone mineral density in pediatric spinal cord injury.
    Ooi HL; Briody J; McQuade M; Munns CF
    J Bone Miner Res; 2012 Jul; 27(7):1536-40. PubMed ID: 22437628
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trabecular Bone Score at the Distal Femur and Proximal Tibia in Individuals With Spinal Cord Injury.
    Lobos S; Cooke A; Simonett G; Ho C; Boyd SK; Edwards WB
    J Clin Densitom; 2019; 22(2):249-256. PubMed ID: 29776736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.