These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26689710)

  • 41. Size of the ligand complex between the N-terminal domain of the gene III coat protein and the non-infectious phage strongly influences the usefulness of in vitro selective infective phage technology.
    Cèbe R; Geiser M
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):841-9. PubMed ID: 11104694
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pathogen detection using engineered bacteriophages.
    Smartt AE; Xu T; Jegier P; Carswell JJ; Blount SA; Sayler GS; Ripp S
    Anal Bioanal Chem; 2012 Apr; 402(10):3127-46. PubMed ID: 22101465
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A DNA sequence-specific electrochemical biosensor based on alginic acid-coated cobalt magnetic beads for the detection of E. coli.
    Geng P; Zhang X; Teng Y; Fu Y; Xu L; Xu M; Jin L; Zhang W
    Biosens Bioelectron; 2011 Mar; 26(7):3325-30. PubMed ID: 21277764
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling bacteriophage amplification as a predictive tool for optimized MALDI-TOF MS-based bacterial detection.
    Cox CR; Rees JC; Voorhees KJ
    J Mass Spectrom; 2012 Nov; 47(11):1435-41. PubMed ID: 23147819
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanomechanical detection of Escherichia coli infection by bacteriophage T7 using cantilever sensors.
    Mertens J; Cuervo A; Carrascosa JL
    Nanoscale; 2019 Oct; 11(38):17689-17698. PubMed ID: 31538998
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Colorimetric detection of Escherichia coli using engineered bacteriophage and an affinity reporter system.
    Singh S; Hinkley T; Nugen SR; Talbert JN
    Anal Bioanal Chem; 2019 Nov; 411(27):7273-7279. PubMed ID: 31511947
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phage based electrochemical detection of Escherichia coli in drinking water using affinity reporter probes.
    Wang D; Hinkley T; Chen J; Talbert JN; Nugen SR
    Analyst; 2019 Feb; 144(4):1345-1352. PubMed ID: 30564809
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens.
    Singh A; Glass N; Tolba M; Brovko L; Griffiths M; Evoy S
    Biosens Bioelectron; 2009 Aug; 24(12):3645-51. PubMed ID: 19520565
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimizing Bacteriophage Surface Densities for Bacterial Capture and Sensing in Quartz Crystal Microbalance with Dissipation Monitoring.
    Olsson AL; Wargenau A; Tufenkji N
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13698-706. PubMed ID: 27171886
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of bacteriophages in sensor development.
    Peltomaa R; López-Perolio I; Benito-Peña E; Barderas R; Moreno-Bondi MC
    Anal Bioanal Chem; 2016 Mar; 408(7):1805-28. PubMed ID: 26472318
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Displaying non-natural, functional molecules on yeast surfaces via biotin-streptavidin interaction.
    Tanaka T; Masunari S; Ishii J; Wakamura K; Segawa M; Fukuda H; Kondo A
    J Biotechnol; 2010 Jan; 145(1):79-83. PubMed ID: 19861139
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid and simple colorimetric detection of Escherichia coli O157:H7 in apple juice using a novel recombinant bacteriophage-based Method.
    Hoang HA; Dien le T
    Biocontrol Sci; 2015; 20(2):99-103. PubMed ID: 26133507
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Towards rapid on-site phage-mediated detection of generic Escherichia coli in water using luminescent and visual readout.
    Burnham S; Hu J; Anany H; Brovko L; Deiss F; Derda R; Griffiths MW
    Anal Bioanal Chem; 2014 Sep; 406(23):5685-93. PubMed ID: 24969469
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Use of phage display for detecting single-nucleotide differences in genes].
    Denisov SG; Beliavskaia VA; Voevoda MI
    Mol Gen Mikrobiol Virusol; 2001; (2):19-24. PubMed ID: 11449795
    [TBL] [Abstract][Full Text] [Related]  

  • 55.
    Hufziger KA; Farquharson EL; Werner BG; Chen Q; Goddard JM; Nugen SR
    ACS Appl Bio Mater; 2022 Nov; 5(11):5104-5112. PubMed ID: 36264000
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacteriophage-based nanoprobes for rapid bacteria separation.
    Chen J; Duncan B; Wang Z; Wang LS; Rotello VM; Nugen SR
    Nanoscale; 2015 Oct; 7(39):16230-6. PubMed ID: 26315848
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New rapid and simple methods for detection of bacteria and determination of their antibiotic susceptibility by using phage mutants.
    Ulitzur N; Ulitzur S
    Appl Environ Microbiol; 2006 Dec; 72(12):7455-9. PubMed ID: 16997981
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of bacteriophage preparations on intracellular killing of bacteria by human phagocytes in vitro.
    Kurzepa-Skaradzinska A; Lusiak-Szelachowska M; Skaradzinski G; Jonczyk-Matysiak E; Weber-Dabrowska B; Zaczek M; Maj T; Slawek A; Rymowicz W; Klak M; Miedzybrodzki R; Gorski A
    Viral Immunol; 2013 Apr; 26(2):150-62. PubMed ID: 23458442
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A microsystem compatible strategy for viable Escherichia coli detection.
    Zhao W; Yao S; Hsing IM
    Biosens Bioelectron; 2006 Jan; 21(7):1163-70. PubMed ID: 15927460
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biotechnological exploitation of bacteriophage research.
    Petty NK; Evans TJ; Fineran PC; Salmond GP
    Trends Biotechnol; 2007 Jan; 25(1):7-15. PubMed ID: 17113664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.