These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 26689818)
1. In situ development of nanosilver-impregnated bacterial cellulose for sustainable released antimicrobial wound dressing. Mohite BV; Patil SV J Appl Biomater Funct Mater; 2016 Apr; 14(1):e53-8. PubMed ID: 26689818 [TBL] [Abstract][Full Text] [Related]
2. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Wu J; Zheng Y; Song W; Luan J; Wen X; Wu Z; Chen X; Wang Q; Guo S Carbohydr Polym; 2014 Feb; 102():762-71. PubMed ID: 24507345 [TBL] [Abstract][Full Text] [Related]
3. Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Luan J; Wu J; Zheng Y; Song W; Wang G; Guo J; Ding X Biomed Mater; 2012 Dec; 7(6):065006. PubMed ID: 23182757 [TBL] [Abstract][Full Text] [Related]
4. Composite Scaffolds Based on Bacterial Cellulose for Wound Dressing Application. Das M; Zandraa O; Mudenur C; Saha N; Sáha P; Mandal B; Katiyar V ACS Appl Bio Mater; 2022 Aug; 5(8):3722-3733. PubMed ID: 35853242 [TBL] [Abstract][Full Text] [Related]
5. Bacterial cellulose matrix with in situ impregnation of silver nanoparticles via catecholic redox chemistry for third degree burn wound healing. Jiji S; Udhayakumar S; Maharajan K; Rose C; Muralidharan C; Kadirvelu K Carbohydr Polym; 2020 Oct; 245():116573. PubMed ID: 32718650 [TBL] [Abstract][Full Text] [Related]
6. Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. Jung R; Kim Y; Kim HS; Jin HJ J Biomater Sci Polym Ed; 2009; 20(3):311-24. PubMed ID: 19192358 [TBL] [Abstract][Full Text] [Related]
7. Nature-Inspired Bacterial Cellulose/Methylglyoxal (BC/MGO) Nanocomposite for Broad-Spectrum Antimicrobial Wound Dressing. Yang M; Ward J; Choy KL Macromol Biosci; 2020 Aug; 20(8):e2000070. PubMed ID: 32567254 [TBL] [Abstract][Full Text] [Related]
8. Homogeneous silver nanoparticle loaded polydopamine/polyethyleneimine-coated bacterial cellulose nanofibers for wound dressing. Ma L; Jiang W; Xun X; Liu M; Han X; Xie J; Wang M; Zhang Q; Peng Z; Ao H Int J Biol Macromol; 2023 Aug; 246():125658. PubMed ID: 37399865 [TBL] [Abstract][Full Text] [Related]
9. Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Wu J; Zheng Y; Wen X; Lin Q; Chen X; Wu Z Biomed Mater; 2014 Jun; 9(3):035005. PubMed ID: 24739469 [TBL] [Abstract][Full Text] [Related]
10. Polyvinyl pyrrolidone/carrageenan blend hydrogels with nanosilver prepared by gamma radiation for use as an antimicrobial wound dressing. Singh D; Singh A; Singh R J Biomater Sci Polym Ed; 2015; 26(17):1269-85. PubMed ID: 26397966 [TBL] [Abstract][Full Text] [Related]
11. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Lin WC; Lien CC; Yeh HJ; Yu CM; Hsu SH Carbohydr Polym; 2013 Apr; 94(1):603-11. PubMed ID: 23544580 [TBL] [Abstract][Full Text] [Related]
12. Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Khalid A; Khan R; Ul-Islam M; Khan T; Wahid F Carbohydr Polym; 2017 May; 164():214-221. PubMed ID: 28325319 [TBL] [Abstract][Full Text] [Related]
13. Viscoelastic properties and antimicrobial activity of cellulose fiber sheets impregnated with Ag nanoparticles. Csóka L; Božanić DK; Nagy V; Dimitrijević-Branković S; Luyt AS; Grozdits G; Djoković V Carbohydr Polym; 2012 Oct; 90(2):1139-46. PubMed ID: 22840051 [TBL] [Abstract][Full Text] [Related]
14. [Advances in the research of antibacterial composite dressings based on bacterial cellulose]. Luo ZH; Zhang JP Zhonghua Shao Shang Za Zhi; 2018 May; 34(5):314-317. PubMed ID: 29804430 [TBL] [Abstract][Full Text] [Related]
15. pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites. Shao W; Liu H; Liu X; Sun H; Wang S; Zhang R Int J Biol Macromol; 2015 May; 76():209-17. PubMed ID: 25748842 [TBL] [Abstract][Full Text] [Related]
16. Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin. Anjum S; Gupta A; Sharma D; Gautam D; Bhan S; Sharma A; Kapil A; Gupta B Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():157-166. PubMed ID: 27127040 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications. Gupta A; Briffa SM; Swingler S; Gibson H; Kannappan V; Adamus G; Kowalczuk M; Martin C; Radecka I Biomacromolecules; 2020 May; 21(5):1802-1811. PubMed ID: 31967794 [TBL] [Abstract][Full Text] [Related]
18. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Sulaeva I; Henniges U; Rosenau T; Potthast A Biotechnol Adv; 2015 Dec; 33(8):1547-71. PubMed ID: 26253857 [TBL] [Abstract][Full Text] [Related]
19. Influence of chemical and physical conditions in selection of Gluconacetobacter hansenii ATCC 23769 strains with high capacity to produce bacterial cellulose for application as sustained antimicrobial drug-release supports. Lazarini SC; Yamada C; Barud HS; Trovatti E; Corbi PP; Lustri WR J Appl Microbiol; 2018 Sep; 125(3):777-791. PubMed ID: 29762885 [TBL] [Abstract][Full Text] [Related]
20. Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L-Lysine. Fürsatz M; Skog M; Sivlér P; Palm E; Aronsson C; Skallberg A; Greczynski G; Khalaf H; Bengtsson T; Aili D Biomed Mater; 2018 Jan; 13(2):025014. PubMed ID: 29047451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]