These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 26689950)
1. Stereochemistry of the Black Tea Pigments Theacitrins A and C. Matsuo Y; Okuda K; Morikawa H; Oowatashi R; Saito Y; Tanaka T J Nat Prod; 2016 Jan; 79(1):189-95. PubMed ID: 26689950 [TBL] [Abstract][Full Text] [Related]
2. Three New Oxidation Products Produced from Epigallocatechin-3- O-gallate and Epicatechin-3-O-gallate. Li Y; Matsuo Y; Saito Y; Tanaka T Nat Prod Commun; 2016 Feb; 11(2):189-92. PubMed ID: 27032198 [TBL] [Abstract][Full Text] [Related]
3. A novel black tea pigment and two new oxidation products of epigallocatechin-3-O-gallate. Tanaka T; Matsuo Y; Kouno I J Agric Food Chem; 2005 Sep; 53(19):7571-8. PubMed ID: 16159188 [TBL] [Abstract][Full Text] [Related]
4. Oxidative coupling of the pyrogallol B-ring with a galloyl group during enzymatic oxidation of epigallocatechin 3-O-gallate. Li Y; Tanaka T; Kouno I Phytochemistry; 2007 Apr; 68(7):1081-8. PubMed ID: 17320123 [TBL] [Abstract][Full Text] [Related]
5. Enzymatic oxidation of gallocatechin and epigallocatechin: effects of C-ring configuration on the reaction products. Matsuo Y; Yamada Y; Tanaka T; Kouno I Phytochemistry; 2008 Dec; 69(18):3054-61. PubMed ID: 17888464 [TBL] [Abstract][Full Text] [Related]
6. Model system-based mechanistic studies of black tea thearubigin formation. Yassin GH; Koek JH; Kuhnert N Food Chem; 2015 Aug; 180():272-279. PubMed ID: 25766828 [TBL] [Abstract][Full Text] [Related]
7. Accumulation of epigallocatechin quinone dimers during tea fermentation and formation of theasinensins. Tanaka T; Mine C; Watarumi S; Fujioka T; Mihashi K; Zhang YJ; Kouno I J Nat Prod; 2002 Nov; 65(11):1582-7. PubMed ID: 12444680 [TBL] [Abstract][Full Text] [Related]
8. [Study of the Stereochemistry and Oxidation Mechanism of Plant Polyphenols, Assisted by Computational Chemistry]. Matsuo Y Yakugaku Zasshi; 2017; 137(3):347-354. PubMed ID: 28250332 [TBL] [Abstract][Full Text] [Related]
9. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins. Li Y; Shibahara A; Matsuo Y; Tanaka T; Kouno I J Nat Prod; 2010 Jan; 73(1):33-9. PubMed ID: 20014758 [TBL] [Abstract][Full Text] [Related]
10. Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations. Severino JF; Goodman BA; Kay CW; Stolze K; Tunega D; Reichenauer TG; Pirker KF Free Radic Biol Med; 2009 Apr; 46(8):1076-88. PubMed ID: 19439236 [TBL] [Abstract][Full Text] [Related]
11. Structural characteristics for superoxide anion radical scavenging and productive activities of green tea polyphenols including proanthocyanidin dimers. Sato M; Toyazaki H; Yoshioka Y; Yokoi N; Yamasaki T Chem Pharm Bull (Tokyo); 2010 Jan; 58(1):98-102. PubMed ID: 20045974 [TBL] [Abstract][Full Text] [Related]
12. Structures of epicatechin gallate trimer and tetramer produced by enzymatic oxidation. Kusano R; Tanaka T; Matsuo Y; Kouno I Chem Pharm Bull (Tokyo); 2007 Dec; 55(12):1768-72. PubMed ID: 18057757 [TBL] [Abstract][Full Text] [Related]
13. Production Mechanisms of Black Tea Polyphenols. Tanaka T; Matsuo Y Chem Pharm Bull (Tokyo); 2020; 68(12):1131-1142. PubMed ID: 33268645 [TBL] [Abstract][Full Text] [Related]
14. Oligomerization Mechanisms of Tea Catechins Involved in the Production of Black Tea Thearubigins. Hashiguchi K; Teramoto S; Katayama K; Matsuo Y; Saito Y; Tanaka T J Agric Food Chem; 2023 Oct; 71(41):15319-15330. PubMed ID: 37812808 [TBL] [Abstract][Full Text] [Related]
15. A novel long-chain acyl-derivative of epigallocatechin-3-O-gallate prepared and purified from green tea polyphenols. Chen P; Tan Y; Sun D; Zheng XM J Zhejiang Univ Sci; 2003; 4(6):714-8. PubMed ID: 14566988 [TBL] [Abstract][Full Text] [Related]
16. Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation. Kuhnert N; Drynan JW; Obuchowicz J; Clifford MN; Witt M Rapid Commun Mass Spectrom; 2010 Dec; 24(23):3387-404. PubMed ID: 21072794 [TBL] [Abstract][Full Text] [Related]
17. The fungal laccase-catalyzed oxidation of EGCG and the characterization of its products. Lee Y; Lin Z; Du G; Deng Z; Yang H; Bai W J Sci Food Agric; 2015 Oct; 95(13):2686-92. PubMed ID: 25407933 [TBL] [Abstract][Full Text] [Related]
18. [Preparation and component analysis of tea pigments]. Li D; Wan X; Xia T Wei Sheng Yan Jiu; 2004 Nov; 33(6):698-700. PubMed ID: 15727181 [TBL] [Abstract][Full Text] [Related]
19. New dibenzotropolone derivatives characterized from black tea using LC/MS/MS. Sang S; Tian S; Stark RE; Yang CS; Ho CT Bioorg Med Chem; 2004 Jun; 12(11):3009-17. PubMed ID: 15142559 [TBL] [Abstract][Full Text] [Related]
20. Impact of Green Tea Catechin ECG and Its Synthesized Fluorinated Analogue on Prostate Cancer Cells and Stimulated Immunocompetent Cells. Stadlbauer S; Steinborn C; Klemd A; Hattori F; Ohmori K; Suzuki K; Huber R; Wolf P; Gründemann C Planta Med; 2018 Jul; 84(11):813-819. PubMed ID: 29466808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]