These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

596 related articles for article (PubMed ID: 26690153)

  • 1. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor-Acceptor Assembly.
    Field LD; Walper SA; Susumu K; Oh E; Medintz IL; Delehanty JB
    Sensors (Basel); 2015 Dec; 15(12):30457-68. PubMed ID: 26690153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-capillary probing of quantum dots and fluorescent protein self-assembly and displacement using Förster resonance energy transfer.
    Wang J; Fan J; Li J; Liu L; Wang J; Jiang P; Liu X; Qiu L
    J Sep Sci; 2017 Feb; 40(4):933-939. PubMed ID: 27935249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-molecule ligands strongly affect the Förster resonance energy transfer between a quantum dot and a fluorescent protein.
    Zhang Y; Zhang H; Hollins J; Webb ME; Zhou D
    Phys Chem Chem Phys; 2011 Nov; 13(43):19427-36. PubMed ID: 21971088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular bioconjugation of targeted proteins with semiconductor quantum dots.
    Boeneman K; Delehanty JB; Susumu K; Stewart MH; Medintz IL
    J Am Chem Soc; 2010 May; 132(17):5975-7. PubMed ID: 20392040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of smart nanoparticle-aptamer sensing technology.
    Zhang H; Stockley PG; Zhou D
    Faraday Discuss; 2011; 149():319-32; discussion 333-56. PubMed ID: 21413189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes.
    Dennis AM; Bao G
    Nano Lett; 2008 May; 8(5):1439-45. PubMed ID: 18412403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies.
    Boeneman K; Mei BC; Dennis AM; Bao G; Deschamps JR; Mattoussi H; Medintz IL
    J Am Chem Soc; 2009 Mar; 131(11):3828-9. PubMed ID: 19243181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum dots and fluorescent protein FRET-based biosensors.
    Boeneman K; Delehanty JB; Susumu K; Stewart MH; Deschamps JR; Medintz IL
    Adv Exp Med Biol; 2012; 733():63-74. PubMed ID: 22101713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing.
    Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL
    ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting kallikrein proteolytic activity with peptide-quantum dot nanosensors.
    Breger JC; Sapsford KE; Ganek J; Susumu K; Stewart MH; Medintz IL
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11529-35. PubMed ID: 25003700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence resonance energy transfer-based stoichiometry in living cells.
    Hoppe A; Christensen K; Swanson JA
    Biophys J; 2002 Dec; 83(6):3652-64. PubMed ID: 12496132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Multivalent Protein-Carbohydrate Interactions by Quantum Dot-Förster Resonance Energy Transfer.
    Guo Y; Bruce Turnbull W; Zhou D
    Methods Enzymol; 2018; 598():71-100. PubMed ID: 29306444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of different donor-acceptor structures via Förster Resonance Energy Transfer (FRET) in quantum-dot-perylene bisimide assemblies.
    Kowerko D; Krause S; Amecke N; Abdel-Mottaleb M; Schuster J; Von Borczyskowski C
    Int J Mol Sci; 2009 Dec; 10(12):5239-5256. PubMed ID: 20054469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dot-based multidonor concentric FRET system and its application to biosensing using an excitation ratio.
    Kim H; Ng CY; Algar WR
    Langmuir; 2014 May; 30(19):5676-85. PubMed ID: 24810095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.
    Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J
    Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.