BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

598 related articles for article (PubMed ID: 26690153)

  • 1. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor-Acceptor Assembly.
    Field LD; Walper SA; Susumu K; Oh E; Medintz IL; Delehanty JB
    Sensors (Basel); 2015 Dec; 15(12):30457-68. PubMed ID: 26690153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-capillary probing of quantum dots and fluorescent protein self-assembly and displacement using Förster resonance energy transfer.
    Wang J; Fan J; Li J; Liu L; Wang J; Jiang P; Liu X; Qiu L
    J Sep Sci; 2017 Feb; 40(4):933-939. PubMed ID: 27935249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-molecule ligands strongly affect the Förster resonance energy transfer between a quantum dot and a fluorescent protein.
    Zhang Y; Zhang H; Hollins J; Webb ME; Zhou D
    Phys Chem Chem Phys; 2011 Nov; 13(43):19427-36. PubMed ID: 21971088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular bioconjugation of targeted proteins with semiconductor quantum dots.
    Boeneman K; Delehanty JB; Susumu K; Stewart MH; Medintz IL
    J Am Chem Soc; 2010 May; 132(17):5975-7. PubMed ID: 20392040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of smart nanoparticle-aptamer sensing technology.
    Zhang H; Stockley PG; Zhou D
    Faraday Discuss; 2011; 149():319-32; discussion 333-56. PubMed ID: 21413189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes.
    Dennis AM; Bao G
    Nano Lett; 2008 May; 8(5):1439-45. PubMed ID: 18412403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies.
    Boeneman K; Mei BC; Dennis AM; Bao G; Deschamps JR; Mattoussi H; Medintz IL
    J Am Chem Soc; 2009 Mar; 131(11):3828-9. PubMed ID: 19243181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum dots and fluorescent protein FRET-based biosensors.
    Boeneman K; Delehanty JB; Susumu K; Stewart MH; Deschamps JR; Medintz IL
    Adv Exp Med Biol; 2012; 733():63-74. PubMed ID: 22101713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing.
    Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL
    ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting kallikrein proteolytic activity with peptide-quantum dot nanosensors.
    Breger JC; Sapsford KE; Ganek J; Susumu K; Stewart MH; Medintz IL
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11529-35. PubMed ID: 25003700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence resonance energy transfer-based stoichiometry in living cells.
    Hoppe A; Christensen K; Swanson JA
    Biophys J; 2002 Dec; 83(6):3652-64. PubMed ID: 12496132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Multivalent Protein-Carbohydrate Interactions by Quantum Dot-Förster Resonance Energy Transfer.
    Guo Y; Bruce Turnbull W; Zhou D
    Methods Enzymol; 2018; 598():71-100. PubMed ID: 29306444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of different donor-acceptor structures via Förster Resonance Energy Transfer (FRET) in quantum-dot-perylene bisimide assemblies.
    Kowerko D; Krause S; Amecke N; Abdel-Mottaleb M; Schuster J; Von Borczyskowski C
    Int J Mol Sci; 2009 Dec; 10(12):5239-5256. PubMed ID: 20054469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dot-based multidonor concentric FRET system and its application to biosensing using an excitation ratio.
    Kim H; Ng CY; Algar WR
    Langmuir; 2014 May; 30(19):5676-85. PubMed ID: 24810095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.
    Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J
    Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.