BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26690240)

  • 1. Cardiac parasympathetic outflow during dynamic exercise in humans estimated from power spectral analysis of P-P interval variability.
    Takahashi M; Nakamoto T; Matsukawa K; Ishii K; Watanabe T; Sekikawa K; Hamada H
    Exp Physiol; 2016 Mar; 101(3):397-409. PubMed ID: 26690240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of heart rate variability by cardiac parasympathetic nerve activity during voluntary static exercise in humans with tetraplegia.
    Takahashi M; Matsukawa K; Nakamoto T; Tsuchimochi H; Sakaguchi A; Kawaguchi K; Onari K
    J Appl Physiol (1985); 2007 Nov; 103(5):1669-77. PubMed ID: 17761788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac vagal activity following three intensities of exercise in humans.
    Gladwell VF; Sandercock GR; Birch SL
    Clin Physiol Funct Imaging; 2010 Jan; 30(1):17-22. PubMed ID: 19744086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in sympathetic and parasympathetic cardiac activation during mental load: an assessment by spectral analysis of heart rate variability.
    Langewitz W; Rüddel H; Schächinger H; Lepper W; Mulder LJ; Veldman JH; van Roon A
    Homeost Health Dis; 1991; 33(1-2):23-33. PubMed ID: 1817688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying cardiac sympathetic and parasympathetic nervous activities using principal dynamic modes analysis of heart rate variability.
    Zhong Y; Jan KM; Ju KH; Chon KH
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1475-83. PubMed ID: 16603701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased cardiac parasympathetic nerve activity of pregnant women during foot baths.
    Miyazato K; Matsukawa K
    Jpn J Nurs Sci; 2010 Jun; 7(1):65-75. PubMed ID: 20618678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of sham feeding on neurocardiac regulation in healthy human volunteers.
    Kamath MV; Spaziani R; Ullal S; Tougas G; Guzman JC; Morillo C; Capogna J; Al-Bayati M; Armstrong D
    Can J Gastroenterol; 2007 Nov; 21(11):721-6. PubMed ID: 18026575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocardiographic criteria for vagotonia-validation with pharmacological parasympathetic blockade in healthy subjects.
    Lazzoli JK; Soares PP; da Nóbrega AC; de Araújo CG
    Int J Cardiol; 2003 Feb; 87(2-3):231-6. PubMed ID: 12559544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new analysis of heart rate variability in the assessment of fetal parasympathetic activity: An experimental study in a fetal sheep model.
    Garabedian C; Champion C; Servan-Schreiber E; Butruille L; Aubry E; Sharma D; Logier R; Deruelle P; Storme L; Houfflin-Debarge V; De Jonckheere J
    PLoS One; 2017; 12(7):e0180653. PubMed ID: 28700617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of cool-down exercise on autonomic control of heart rate during recovery from dynamic exercise.
    Takahashi T; Okada A; Hayano J; Tamura T
    Front Med Biol Eng; 2002; 11(4):249-59. PubMed ID: 12735426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. R-R variability detects increases in vagal modulation with phenylephrine infusion.
    Bloomfield DM; Zweibel S; Bigger JT; Steinman RC
    Am J Physiol; 1998 May; 274(5):H1761-6. PubMed ID: 9612388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parasympathetic effects on heart rate recovery after exercise.
    Kannankeril PJ; Le FK; Kadish AH; Goldberger JJ
    J Investig Med; 2004 Sep; 52(6):394-401. PubMed ID: 15612453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term correlation properties of R-R interval dynamics at different exercise intensity levels.
    Hautala AJ; Mäkikallio TH; Seppänen T; Huikuri HV; Tulppo MP
    Clin Physiol Funct Imaging; 2003 Jul; 23(4):215-23. PubMed ID: 12914561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac vagal outflow after aerobic training by analysis of high-frequency oscillation of the R-R interval.
    Kiviniemi AM; Hautala AJ; Mäkikallio TH; Seppänen T; Huikuri HV; Tulppo MP
    Eur J Appl Physiol; 2006 Apr; 96(6):686-92. PubMed ID: 16416318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sympathetic nervous system representation in time and frequency domain indices of heart rate variability.
    Polanczyk CA; Rohde LE; Moraes RS; Ferlin EL; Leite C; Ribeiro JP
    Eur J Appl Physiol Occup Physiol; 1998 Dec; 79(1):69-73. PubMed ID: 10052663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective quantification of the cardiac sympathetic and parasympathetic nervous systems by multisignal analysis of cardiorespiratory variability.
    Chen X; Mukkamala R
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H362-71. PubMed ID: 17993596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sympathovagal balance: how should we measure it?
    Goldberger JJ
    Am J Physiol; 1999 Apr; 276(4):H1273-80. PubMed ID: 10199852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic changes in cardiac vagal tone as measured by time-series analysis.
    Billman GE; Dujardin JP
    Am J Physiol; 1990 Mar; 258(3 Pt 2):H896-902. PubMed ID: 1969240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central vagotonic effects of atropine modulate spectral oscillations of sympathetic nerve activity.
    Montano N; Cogliati C; Porta A; Pagani M; Malliani A; Narkiewicz K; Abboud FM; Birkett C; Somers VK
    Circulation; 1998 Oct; 98(14):1394-9. PubMed ID: 9760293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vagal nerve stimulation activates vagal afferent fibers that reduce cardiac efferent parasympathetic effects.
    Yamakawa K; Rajendran PS; Takamiya T; Yagishita D; So EL; Mahajan A; Shivkumar K; Vaseghi M
    Am J Physiol Heart Circ Physiol; 2015 Nov; 309(9):H1579-90. PubMed ID: 26371172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.