These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Recent advances and future applications of microfluidic live-cell microarrays. Rothbauer M; Wartmann D; Charwat V; Ertl P Biotechnol Adv; 2015 Nov; 33(6 Pt 1):948-61. PubMed ID: 26133396 [TBL] [Abstract][Full Text] [Related]
7. Physiologically relevant organs on chips. Yum K; Hong SG; Healy KE; Lee LP Biotechnol J; 2014 Jan; 9(1):16-27. PubMed ID: 24357624 [TBL] [Abstract][Full Text] [Related]
8. Microengineered physiological biomimicry: organs-on-chips. Huh D; Torisawa YS; Hamilton GA; Kim HJ; Ingber DE Lab Chip; 2012 Jun; 12(12):2156-64. PubMed ID: 22555377 [TBL] [Abstract][Full Text] [Related]
9. Organs-on-a-chip: a focus on compartmentalized microdevices. Moraes C; Mehta G; Lesher-Perez SC; Takayama S Ann Biomed Eng; 2012 Jun; 40(6):1211-27. PubMed ID: 22065201 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic Organ-on-a-Chip Technology for Advancement of Drug Development and Toxicology. Caplin JD; Granados NG; James MR; Montazami R; Hashemi N Adv Healthc Mater; 2015 Jul; 4(10):1426-50. PubMed ID: 25820344 [TBL] [Abstract][Full Text] [Related]
11. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies. Mohammadi MH; Heidary Araghi B; Beydaghi V; Geraili A; Moradi F; Jafari P; Janmaleki M; Valente KP; Akbari M; Sanati-Nezhad A Adv Healthc Mater; 2016 Oct; 5(19):2459-2480. PubMed ID: 27548388 [TBL] [Abstract][Full Text] [Related]
12. Bioinspired Engineering of Organ-on-Chip Devices. Wang L; Li Z; Xu C; Qin J Adv Exp Med Biol; 2019; 1174():401-440. PubMed ID: 31713207 [TBL] [Abstract][Full Text] [Related]
13. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Luka G; Ahmadi A; Najjaran H; Alocilja E; DeRosa M; Wolthers K; Malki A; Aziz H; Althani A; Hoorfar M Sensors (Basel); 2015 Dec; 15(12):30011-31. PubMed ID: 26633409 [TBL] [Abstract][Full Text] [Related]
14. Applications of Microfluidics in Quantitative Biology. Bai Y; Gao M; Wen L; He C; Chen Y; Liu C; Fu X; Huang S Biotechnol J; 2018 May; 13(5):e1700170. PubMed ID: 28976637 [TBL] [Abstract][Full Text] [Related]
15. Microfluidics in male reproduction: is ex vivo culture of primate testis tissue a future strategy for ART or toxicology research? Sharma S; Venzac B; Burgers T; Le Gac S; Schlatt S Mol Hum Reprod; 2020 Mar; 26(3):179-192. PubMed ID: 31977028 [TBL] [Abstract][Full Text] [Related]
16. Construction, Features and Regulatory Aspects of Organ-chip for Drug Delivery Applications: Advances and Prospective. Gupta B; Malviya R; Srivastava S; Ahmad I; Rab SO; Uniyal P Curr Pharm Des; 2024; 30(25):1952-1965. PubMed ID: 38859792 [TBL] [Abstract][Full Text] [Related]
17. Next generation human skin constructs as advanced tools for drug development. Abaci HE; Guo Z; Doucet Y; Jacków J; Christiano A Exp Biol Med (Maywood); 2017 Nov; 242(17):1657-1668. PubMed ID: 28592171 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in microfluidic technologies for cell-to-cell interaction studies. Rothbauer M; Zirath H; Ertl P Lab Chip; 2018 Jan; 18(2):249-270. PubMed ID: 29143053 [TBL] [Abstract][Full Text] [Related]
19. Microfluidics-based in vivo mimetic systems for the study of cellular biology. Kim D; Wu X; Young AT; Haynes CL Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566 [TBL] [Abstract][Full Text] [Related]