These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26690449)

  • 1. Design and Calibration of a New 6 DOF Haptic Device.
    Qin H; Song A; Liu Y; Jiang G; Zhou B
    Sensors (Basel); 2015 Dec; 15(12):31293-313. PubMed ID: 26690449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards wearability in fingertip haptics: a 3-DoF wearable device for cutaneous force feedback.
    Prattichizzo D; Chinello F; Pacchierotti C; Malvezzi M
    IEEE Trans Haptics; 2013; 6(4):506-16. PubMed ID: 24808402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A one-DOF freehand haptic device for robotic tele-echography.
    Marchal M; Troccaz J
    Stud Health Technol Inform; 2004; 98():231-3. PubMed ID: 15544277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haptigami: A Fingertip Haptic Interface With Vibrotactile and 3-DoF Cutaneous Force Feedback.
    Giraud FH; Joshi S; Paik J
    IEEE Trans Haptics; 2022; 15(1):131-141. PubMed ID: 34379595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Five-Fingered Haptic Interface Robot: HIRO III.
    Endo T; Kawasaki H; Mouri T; Ishigure Y; Shimomura H; Matsumura M; Koketsu K
    IEEE Trans Haptics; 2011; 4(1):14-27. PubMed ID: 26962952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Position calibration of a 3-DOF hand-controller with hybrid structure.
    Zhu C; Song A
    Rev Sci Instrum; 2017 Sep; 88(9):095002. PubMed ID: 28964204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hand-held device with 3-DOF haptic feedback mechanism for microsurgery.
    Wang Z; Wang S; Zuo S
    Int J Med Robot; 2019 Oct; 15(5):e2025. PubMed ID: 31266093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Haptic Device Presenting Sensations of Fingertips to the Forearm.
    Moriyama T; Kajimoto H
    IEEE Trans Haptics; 2022; 15(1):91-96. PubMed ID: 35077369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A toolkit for haptic force feedback in a telerobotic ultrasound system.
    Fotouhi R; Najafi Semnani A; Zhang Q; Adams SJ; Obaid H
    BMC Res Notes; 2021 Oct; 14(1):393. PubMed ID: 34689794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoscopic visualization and haptic technology used to create a virtual environment for remote surgery - biomed 2011.
    Bornhoft JM; Strabala KW; Wortman TD; Lehman AC; Oleynikov D; Farritor SM
    Biomed Sci Instrum; 2011; 47():76-81. PubMed ID: 21525600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Skin Deformation as Force Substitution: Wearable Device Design and Performance During Haptic Exploration of Virtual Environments.
    Schorr SB; Okamura AM
    IEEE Trans Haptics; 2017; 10(3):418-430. PubMed ID: 28237933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of haptic degrees of freedom on task performance in virtual surgical environments.
    Forsslund J; Chan S; Selesnick J; Salisbury K; Silva RG; Blevins NH
    Stud Health Technol Inform; 2013; 184():129-35. PubMed ID: 23400144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Customization, control, and characterization of a commercial haptic device for high-fidelity rendering of weak forces.
    Gurari N; Baud-Bovy G
    J Neurosci Methods; 2014 Sep; 235():169-80. PubMed ID: 25043509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3-RSR Haptic Wearable Device for Rendering Fingertip Contact Forces.
    Leonardis D; Solazzi M; Bortone I; Frisoli A
    IEEE Trans Haptics; 2017; 10(3):305-316. PubMed ID: 28113306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lightweight Accessible Wearable Robotic Interface for Bimanual Haptic Manipulations.
    Mo Y; Song A; Qin H
    IEEE Trans Haptics; 2022; 15(1):85-90. PubMed ID: 34941522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable teleoperation controller with 2-DoF robotic arm and haptic feedback for enhanced interaction in virtual reality.
    Zhang Z; Qian C
    Front Neurorobot; 2023; 17():1228587. PubMed ID: 37609455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.