BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26690449)

  • 1. Design and Calibration of a New 6 DOF Haptic Device.
    Qin H; Song A; Liu Y; Jiang G; Zhou B
    Sensors (Basel); 2015 Dec; 15(12):31293-313. PubMed ID: 26690449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards wearability in fingertip haptics: a 3-DoF wearable device for cutaneous force feedback.
    Prattichizzo D; Chinello F; Pacchierotti C; Malvezzi M
    IEEE Trans Haptics; 2013; 6(4):506-16. PubMed ID: 24808402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A one-DOF freehand haptic device for robotic tele-echography.
    Marchal M; Troccaz J
    Stud Health Technol Inform; 2004; 98():231-3. PubMed ID: 15544277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haptigami: A Fingertip Haptic Interface With Vibrotactile and 3-DoF Cutaneous Force Feedback.
    Giraud FH; Joshi S; Paik J
    IEEE Trans Haptics; 2022; 15(1):131-141. PubMed ID: 34379595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Five-Fingered Haptic Interface Robot: HIRO III.
    Endo T; Kawasaki H; Mouri T; Ishigure Y; Shimomura H; Matsumura M; Koketsu K
    IEEE Trans Haptics; 2011; 4(1):14-27. PubMed ID: 26962952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Position calibration of a 3-DOF hand-controller with hybrid structure.
    Zhu C; Song A
    Rev Sci Instrum; 2017 Sep; 88(9):095002. PubMed ID: 28964204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hand-held device with 3-DOF haptic feedback mechanism for microsurgery.
    Wang Z; Wang S; Zuo S
    Int J Med Robot; 2019 Oct; 15(5):e2025. PubMed ID: 31266093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Haptic Device Presenting Sensations of Fingertips to the Forearm.
    Moriyama T; Kajimoto H
    IEEE Trans Haptics; 2022; 15(1):91-96. PubMed ID: 35077369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A toolkit for haptic force feedback in a telerobotic ultrasound system.
    Fotouhi R; Najafi Semnani A; Zhang Q; Adams SJ; Obaid H
    BMC Res Notes; 2021 Oct; 14(1):393. PubMed ID: 34689794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoscopic visualization and haptic technology used to create a virtual environment for remote surgery - biomed 2011.
    Bornhoft JM; Strabala KW; Wortman TD; Lehman AC; Oleynikov D; Farritor SM
    Biomed Sci Instrum; 2011; 47():76-81. PubMed ID: 21525600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Skin Deformation as Force Substitution: Wearable Device Design and Performance During Haptic Exploration of Virtual Environments.
    Schorr SB; Okamura AM
    IEEE Trans Haptics; 2017; 10(3):418-430. PubMed ID: 28237933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of haptic degrees of freedom on task performance in virtual surgical environments.
    Forsslund J; Chan S; Selesnick J; Salisbury K; Silva RG; Blevins NH
    Stud Health Technol Inform; 2013; 184():129-35. PubMed ID: 23400144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Customization, control, and characterization of a commercial haptic device for high-fidelity rendering of weak forces.
    Gurari N; Baud-Bovy G
    J Neurosci Methods; 2014 Sep; 235():169-80. PubMed ID: 25043509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3-RSR Haptic Wearable Device for Rendering Fingertip Contact Forces.
    Leonardis D; Solazzi M; Bortone I; Frisoli A
    IEEE Trans Haptics; 2017; 10(3):305-316. PubMed ID: 28113306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lightweight Accessible Wearable Robotic Interface for Bimanual Haptic Manipulations.
    Mo Y; Song A; Qin H
    IEEE Trans Haptics; 2022; 15(1):85-90. PubMed ID: 34941522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable teleoperation controller with 2-DoF robotic arm and haptic feedback for enhanced interaction in virtual reality.
    Zhang Z; Qian C
    Front Neurorobot; 2023; 17():1228587. PubMed ID: 37609455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.