These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Bottom-up and top-down effects of browning and warming on shallow lake food webs. Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702 [TBL] [Abstract][Full Text] [Related]
3. Decoupled trophic responses to long-term recovery from acidification and associated browning in lakes. Leach TH; Winslow LA; Hayes NM; Rose KC Glob Chang Biol; 2019 May; 25(5):1779-1792. PubMed ID: 30698903 [TBL] [Abstract][Full Text] [Related]
4. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Williamson CE; Neale PJ; Hylander S; Rose KC; Figueroa FL; Robinson SA; Häder DP; Wängberg SÅ; Worrest RC Photochem Photobiol Sci; 2019 Mar; 18(3):717-746. PubMed ID: 30810561 [TBL] [Abstract][Full Text] [Related]
5. Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes. Higgins SN; Althouse B; Devlin SP; Vadeboncoeur Y; Vander Zanden MJ Ecology; 2014 Aug; 95(8):2257-67. PubMed ID: 25230476 [TBL] [Abstract][Full Text] [Related]
6. The rise and fall of plankton: long-term changes in the vertical distribution of algae and grazers in Lake Baikal, Siberia. Hampton SE; Gray DK; Izmest'eva LR; Moore MV; Ozersky T PLoS One; 2014; 9(2):e88920. PubMed ID: 24586441 [TBL] [Abstract][Full Text] [Related]
7. Concurrent warming and browning eliminate cold-water fish habitat in many temperate lakes. Jane SF; Detmer TM; Larrick SL; Rose KC; Randall EA; Jirka KJ; McIntyre PB Proc Natl Acad Sci U S A; 2024 Jan; 121(2):e2306906120. PubMed ID: 38165940 [TBL] [Abstract][Full Text] [Related]
8. Modelling ROS formation in boreal lakes from interactions between dissolved organic matter and absorbed solar photon flux. Wolf R; Thrane JE; Hessen DO; Andersen T Water Res; 2018 Apr; 132():331-339. PubMed ID: 29339305 [TBL] [Abstract][Full Text] [Related]
9. Lowered nutritional quality of plankton caused by global environmental changes. Lau DCP; Jonsson A; Isles PDF; Creed IF; Bergström AK Glob Chang Biol; 2021 Dec; 27(23):6294-6306. PubMed ID: 34520606 [TBL] [Abstract][Full Text] [Related]
10. Browning-induced changes in trophic functioning of planktonic food webs in temperate and boreal lakes: insights from fatty acids. Strandberg U; Hiltunen M; Creed IF; Arts MT; Kankaala P Oecologia; 2023 Jan; 201(1):183-197. PubMed ID: 36520221 [TBL] [Abstract][Full Text] [Related]
11. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Häder DP; Williamson CE; Wängberg SÅ; Rautio M; Rose KC; Gao K; Helbling EW; Sinha RP; Worrest R Photochem Photobiol Sci; 2015 Jan; 14(1):108-26. PubMed ID: 25388554 [TBL] [Abstract][Full Text] [Related]
12. Tropical high-altitude Andean lakes located above the tree line attenuate UV-A radiation more strongly than typical temperate alpine lakes. Aguilera X; Lazzaro X; Coronel JS Photochem Photobiol Sci; 2013 Sep; 12(9):1649-57. PubMed ID: 23722356 [TBL] [Abstract][Full Text] [Related]
13. Food web de-synchronization in England's largest lake: an assessment based on multiple phenological metrics. Thackeray SJ; Henrys PA; Feuchtmayr H; Jones ID; Maberly SC; Winfield IJ Glob Chang Biol; 2013 Dec; 19(12):3568-80. PubMed ID: 23868351 [TBL] [Abstract][Full Text] [Related]
14. From clear lakes to murky waters - tracing the functional response of high-latitude lake communities to concurrent 'greening' and 'browning'. Hayden B; Harrod C; Thomas SM; Eloranta AP; Myllykangas JP; Siwertsson A; Praebel K; Knudsen R; Amundsen PA; Kahilainen KK Ecol Lett; 2019 May; 22(5):807-816. PubMed ID: 30793453 [TBL] [Abstract][Full Text] [Related]
15. Experimental whole-lake increase of dissolved organic carbon concentration produces unexpected increase in crustacean zooplankton density. Kelly PT; Craig N; Solomon CT; Weidel BC; Zwart JA; Jones SE Glob Chang Biol; 2016 Aug; 22(8):2766-75. PubMed ID: 26919470 [TBL] [Abstract][Full Text] [Related]
16. Tree line advance reduces mixing and oxygen concentrations in arctic-alpine lakes through wind sheltering and organic carbon supply. Klaus M; Karlsson J; Seekell D Glob Chang Biol; 2021 Sep; 27(18):4238-4253. PubMed ID: 33960592 [TBL] [Abstract][Full Text] [Related]
17. Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes. Berggren M; Ziegler SE; St-Gelais NF; Beisner BE; Del Giorgio PA Ecology; 2014 Jul; 95(7):1947-59. PubMed ID: 25163126 [TBL] [Abstract][Full Text] [Related]
18. The browning and re-browning of lakes: Divergent lake-water organic carbon trends linked to acid deposition and climate change. Meyer-Jacob C; Michelutti N; Paterson AM; Cumming BF; Keller WB; Smol JP Sci Rep; 2019 Nov; 9(1):16676. PubMed ID: 31723150 [TBL] [Abstract][Full Text] [Related]
19. Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes. Shatwell T; Adrian R; Kirillin G Sci Rep; 2016 Apr; 6():24361. PubMed ID: 27074883 [TBL] [Abstract][Full Text] [Related]
20. Ecology and extent of freshwater browning - What we know and what should be studied next in the context of global change. Blanchet CC; Arzel C; Davranche A; Kahilainen KK; Secondi J; Taipale S; Lindberg H; Loehr J; Manninen-Johansen S; Sundell J; Maanan M; Nummi P Sci Total Environ; 2022 Mar; 812():152420. PubMed ID: 34953836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]