These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 26690586)
1. Metal Ion Capture Mechanism of a Copper Metallochaperone. Chakravorty DK; Li P; Tran TT; Bayse CA; Merz KM Biochemistry; 2016 Jan; 55(3):501-9. PubMed ID: 26690586 [TBL] [Abstract][Full Text] [Related]
2. Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF. Chakravorty DK; Wang B; Ucisik MN; Merz KM J Am Chem Soc; 2011 Dec; 133(48):19330-3. PubMed ID: 22029374 [TBL] [Abstract][Full Text] [Related]
3. A novel copper-binding fold for the periplasmic copper resistance protein CusF. Loftin IR; Franke S; Roberts SA; Weichsel A; Héroux A; Montfort WR; Rensing C; McEvoy MM Biochemistry; 2005 Aug; 44(31):10533-40. PubMed ID: 16060662 [TBL] [Abstract][Full Text] [Related]
4. Models for the Metal Transfer Complex of the N-Terminal Region of CusB and CusF. Ucisik MN; Chakravorty DK; Merz KM Biochemistry; 2015 Jul; 54(27):4226-35. PubMed ID: 26079272 [TBL] [Abstract][Full Text] [Related]
5. Tryptophan Cu(I)-pi interaction fine-tunes the metal binding properties of the bacterial metallochaperone CusF. Loftin IR; Blackburn NJ; McEvoy MM J Biol Inorg Chem; 2009 Aug; 14(6):905-12. PubMed ID: 19381697 [TBL] [Abstract][Full Text] [Related]
6. Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Bagai I; Rensing C; Blackburn NJ; McEvoy MM Biochemistry; 2008 Nov; 47(44):11408-14. PubMed ID: 18847219 [TBL] [Abstract][Full Text] [Related]
7. EPR spectroscopy identifies Met and Lys residues that are essential for the interaction between the CusB N-terminal domain and metallochaperone CusF. Meir A; Natan A; Moskovitz Y; Ruthstein S Metallomics; 2015 Jul; 7(7):1163-72. PubMed ID: 25940871 [TBL] [Abstract][Full Text] [Related]
8. Unusual Cu(I)/Ag(I) coordination of Escherichia coli CusF as revealed by atomic resolution crystallography and X-ray absorption spectroscopy. Loftin IR; Franke S; Blackburn NJ; McEvoy MM Protein Sci; 2007 Oct; 16(10):2287-93. PubMed ID: 17893365 [TBL] [Abstract][Full Text] [Related]
9. Periplasmic metal-resistance protein CusF exhibits high affinity and specificity for both CuI and AgI. Kittleson JT; Loftin IR; Hausrath AC; Engelhardt KP; Rensing C; McEvoy MM Biochemistry; 2006 Sep; 45(37):11096-102. PubMed ID: 16964970 [TBL] [Abstract][Full Text] [Related]
10. Cu(I) recognition via cation-pi and methionine interactions in CusF. Xue Y; Davis AV; Balakrishnan G; Stasser JP; Staehlin BM; Focia P; Spiro TG; Penner-Hahn JE; O'Halloran TV Nat Chem Biol; 2008 Feb; 4(2):107-9. PubMed ID: 18157124 [TBL] [Abstract][Full Text] [Related]
11. Interactions between CusF and CusB identified by NMR spectroscopy and chemical cross-linking coupled to mass spectrometry. Mealman TD; Bagai I; Singh P; Goodlett DR; Rensing C; Zhou H; Wysocki VH; McEvoy MM Biochemistry; 2011 Apr; 50(13):2559-66. PubMed ID: 21323389 [TBL] [Abstract][Full Text] [Related]
12. Studying allosteric regulation in metal sensor proteins using computational methods. Chakravorty DK; Merz KM Adv Protein Chem Struct Biol; 2014; 96():181-218. PubMed ID: 25443958 [TBL] [Abstract][Full Text] [Related]
13. Solution structure of the apo and copper(I)-loaded human metallochaperone HAH1. Anastassopoulou I; Banci L; Bertini I; Cantini F; Katsari E; Rosato A Biochemistry; 2004 Oct; 43(41):13046-53. PubMed ID: 15476398 [TBL] [Abstract][Full Text] [Related]
14. Copper-transfer mechanism from the human chaperone Atox1 to a metal-binding domain of Wilson disease protein. Rodriguez-Granillo A; Crespo A; Estrin DA; Wittung-Stafshede P J Phys Chem B; 2010 Mar; 114(10):3698-706. PubMed ID: 20166696 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics study of the metallochaperone Hah1 in its apo and Cu(I)-loaded states: role of the conserved residue M10. Poger D; Fuchs JF; Nedev H; Ferrand M; Crouzy S FEBS Lett; 2005 Oct; 579(24):5287-92. PubMed ID: 16194538 [TBL] [Abstract][Full Text] [Related]
16. EPR Spectroscopy Targets Structural Changes in the E. coli Membrane Fusion CusB upon Cu(I) Binding. Meir A; Abdelhai A; Moskovitz Y; Ruthstein S Biophys J; 2017 Jun; 112(12):2494-2502. PubMed ID: 28636907 [TBL] [Abstract][Full Text] [Related]
17. Structure and dynamics of Cu(I) binding in copper chaperones Atox1 and CopZ: a computer simulation study. Rodriguez-Granillo A; Wittung-Stafshede P J Phys Chem B; 2008 Apr; 112(15):4583-93. PubMed ID: 18361527 [TBL] [Abstract][Full Text] [Related]
18. N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF. Mealman TD; Zhou M; Affandi T; Chacón KN; Aranguren ME; Blackburn NJ; Wysocki VH; McEvoy MM Biochemistry; 2012 Aug; 51(34):6767-75. PubMed ID: 22812620 [TBL] [Abstract][Full Text] [Related]
19. Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1. Arnesano F; Banci L; Bertini I; Huffman DL; O'Halloran TV Biochemistry; 2001 Feb; 40(6):1528-39. PubMed ID: 11327811 [TBL] [Abstract][Full Text] [Related]
20. Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system. Bagai I; Liu W; Rensing C; Blackburn NJ; McEvoy MM J Biol Chem; 2007 Dec; 282(49):35695-702. PubMed ID: 17893146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]