BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 26690586)

  • 21. Structure and dynamics of the N-terminal domain of the Cu(I) binding protein CusB.
    Ucisik MN; Chakravorty DK; Merz KM
    Biochemistry; 2013 Oct; 52(39):6911-23. PubMed ID: 23988152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating the electronic structure of the Atox1 copper(I) transfer mechanism with density functional theory.
    Pitts AL; Hall MB
    Inorg Chem; 2013 Sep; 52(18):10387-93. PubMed ID: 23978201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insights into Cu(I) exchange in HAH1 using quantum mechanical and molecular simulations.
    Op't Holt BT; Merz KM
    Biochemistry; 2007 Jul; 46(30):8816-26. PubMed ID: 17616150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins.
    Chacón KN; Mealman TD; McEvoy MM; Blackburn NJ
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15373-8. PubMed ID: 25313055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and metal binding characterization of the C-terminal metallochaperone domain of membrane fusion protein SilB from Cupriavidus metallidurans CH34.
    Bersch B; Derfoufi KM; De Angelis F; Auquier V; Ekendé EN; Mergeay M; Ruysschaert JM; Vandenbussche G
    Biochemistry; 2011 Mar; 50(12):2194-204. PubMed ID: 21299248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antioxidant activity of rooperol investigated through Cu (I and II) chelation ability and the hydrogen transfer mechanism: a DFT study.
    Kabanda MM
    Chem Res Toxicol; 2012 Oct; 25(10):2153-66. PubMed ID: 22946567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solution structure of Apo Cu,Zn superoxide dismutase: role of metal ions in protein folding.
    Banci L; Bertini I; Cramaro F; Del Conte R; Viezzoli MS
    Biochemistry; 2003 Aug; 42(32):9543-53. PubMed ID: 12911296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational study of the binding affinity and selectivity of the bacterial ammonium transporter AmtB.
    Luzhkov VB; Almlöf M; Nervall M; Aqvist J
    Biochemistry; 2006 Sep; 45(36):10807-14. PubMed ID: 16953566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coordination of Ni2+ and Cu2+ to metal ion binding domains of E. coli SlyD protein.
    Witkowska D; Valensin D; Rowinska-Zyrek M; Karafova A; Kamysz W; Kozlowski H
    J Inorg Biochem; 2012 Feb; 107(1):73-81. PubMed ID: 22178668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+ -Transporting ATPase along the Ion Transport Cycle.
    Meng D; Bruschweiler-Li L; Zhang F; Brüschweiler R
    Biochemistry; 2015 Aug; 54(32):5095-102. PubMed ID: 26196187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulations on the Escherichia coli ammonia channel protein AmtB: mechanism of ammonia/ammonium transport.
    Lin Y; Cao Z; Mo Y
    J Am Chem Soc; 2006 Aug; 128(33):10876-84. PubMed ID: 16910683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and metal loading of a soluble periplasm cuproprotein.
    Waldron KJ; Firbank SJ; Dainty SJ; Pérez-Rama M; Tottey S; Robinson NJ
    J Biol Chem; 2010 Oct; 285(42):32504-11. PubMed ID: 20702411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel model peptide for Atx1-like metallochaperones.
    Sénèque O; Crouzy S; Boturyn D; Dumy P; Ferrand M; Delangle P
    Chem Commun (Camb); 2004 Apr; (7):770-1. PubMed ID: 15045055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting the coordination number within copper chaperones: Atox1 as case study.
    Ansbacher T; Shurki A
    J Phys Chem B; 2012 Apr; 116(15):4425-32. PubMed ID: 22480337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PcoE--a metal sponge expressed to the periplasm of copper resistance Escherichia coli. Implication of its function role in copper resistance.
    Zimmermann M; Udagedara SR; Sze CM; Ryan TM; Howlett GJ; Xiao Z; Wedd AG
    J Inorg Biochem; 2012 Oct; 115():186-97. PubMed ID: 22658755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli.
    Mealman TD; Blackburn NJ; McEvoy MM
    Curr Top Membr; 2012; 69():163-96. PubMed ID: 23046651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copper coordination states affect the flexibility of copper Metallochaperone Atox1: Insights from molecular dynamics simulations.
    Schwartz R; Ruthstein S; Major DT
    Protein Sci; 2022 Dec; 31(12):e4464. PubMed ID: 36208051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics simulations on the mechanism of transporting methylamine and ammonia by ammonium transporter AmtB.
    Wang J; Yang H; Zuo Z; Yan X; Wang Y; Luo X; Jiang H; Chen K; Zhu W
    J Phys Chem B; 2010 Nov; 114(46):15172-9. PubMed ID: 20973592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.