These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26690815)

  • 1. Insights into structural and dynamical features of water at halloysite interfaces probed by DFT and classical molecular dynamics simulations.
    Presti D; Pedone A; Mancini G; Duce C; Tiné MR; Barone V
    Phys Chem Chem Phys; 2016 Jan; 18(3):2164-74. PubMed ID: 26690815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism Responsible for Intercalation of Dimethyl Sulfoxide in Kaolinite: Molecular Dynamics Simulations.
    Zhang S; Liu Q; Cheng H; Gao F; Liu C; Teppen BJ
    Appl Clay Sci; 2018 Jan; 151():46-53. PubMed ID: 29545655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.
    Rana MK; Chandra A
    J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hydrophobic effect: molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces.
    Jensen MØ; Mouritsen OG; Peters GH
    J Chem Phys; 2004 May; 120(20):9729-44. PubMed ID: 15267989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of select polarizable and non-polarizable water models in predicting solvation dynamics of water confined between MgO slabs.
    Kamath G; Deshmukh SA; Sankaranarayanan SK
    J Phys Condens Matter; 2013 Jul; 25(30):305003. PubMed ID: 23819970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why does vacuum drive to the loading of halloysite nanotubes? The key role of water confinement.
    Lisuzzo L; Cavallaro G; Pasbakhsh P; Milioto S; Lazzara G
    J Colloid Interface Sci; 2019 Jul; 547():361-369. PubMed ID: 30974251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite.
    Cheng H; Frost RL; Yang J; Liu Q; He J
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1014-20. PubMed ID: 20864389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of thymine and uracil on 1:1 clay mineral surfaces: comprehensive ab initio study on influence of sodium cation and water.
    Michalkova A; Robinson TL; Leszczynski J
    Phys Chem Chem Phys; 2011 May; 13(17):7862-81. PubMed ID: 21437301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulations of the structure and dynamics of water confined between alkanethiol self-assembled monolayer plates.
    Layfield JP; Troya D
    J Phys Chem B; 2011 Apr; 115(16):4662-70. PubMed ID: 21466175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation and Optimization of Interface Force Fields for Water on Gold Surfaces.
    Berg A; Peter C; Johnston K
    J Chem Theory Comput; 2017 Nov; 13(11):5610-5623. PubMed ID: 28992416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial Structure and Interaction of Kaolinite Intercalated with N-methylformamide Insight from Molecular Dynamics Modeling.
    Zhang S; Liu Q; Gao F; Ma R; Wu Z; Teppen BJ
    Appl Clay Sci; 2018 Jun; 158():204-210. PubMed ID: 30364591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of Surface Charge Properties during Kaolinite to Halloysite-7Å Transformation.
    Tarì G; Bobos I; Gomes CSF; Ferreira JMF
    J Colloid Interface Sci; 1999 Feb; 210(2):360-366. PubMed ID: 9929423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics Simulation of Basal Spacing, Energetics, and Structure Evolution of a Kaolinite-Formamide Intercalation Complex and Their Interfacial Interaction.
    Zhang S; Liu Q; Gao F; Teppen BJ
    J Phys Chem C Nanomater Interfaces; 2018 Feb; 122(6):3341-3349. PubMed ID: 29657662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating Surfactant-Iron Oxide Interfaces: From Density Functional Theory to Molecular Dynamics.
    Latorre CA; Ewen JP; Gattinoni C; Dini D
    J Phys Chem B; 2019 Aug; 123(31):6870-6881. PubMed ID: 31294575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and Dynamics of Water Confined in Imogolite Nanotubes.
    Scalfi L; Fraux G; Boutin A; Coudert FX
    Langmuir; 2018 Jun; 34(23):6748-6756. PubMed ID: 29782170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network molecular dynamics simulations of solid-liquid interfaces: water at low-index copper surfaces.
    Natarajan SK; Behler J
    Phys Chem Chem Phys; 2016 Oct; 18(41):28704-28725. PubMed ID: 27722603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration of Li+ -ion in atom-bond electronegativity equalization method-7P water: a molecular dynamics simulation study.
    Li X; Yang ZZ
    J Chem Phys; 2005 Feb; 122(8):84514. PubMed ID: 15836070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide aggregation and solvent electrostriction in a simple zwitterionic dipeptide via molecular dynamics simulations.
    Tulip PR; Bates SP
    J Chem Phys; 2009 Jul; 131(1):015103. PubMed ID: 19586124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.