These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26690885)

  • 1. Toward Microfluidic Reactors for Cell-Free Protein Synthesis at the Point-of-Care.
    Timm AC; Shankles PG; Foster CM; Doktycz MJ; Retterer ST
    Small; 2016 Feb; 12(6):810-7. PubMed ID: 26690885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrofoam and oxygen headspace bioreactors improve cell-free therapeutic protein production yields through enhanced oxygen transport.
    Nelson JAD; Barnett RJ; Hunt JP; Foutz I; Welton M; Bundy BC
    Biotechnol Prog; 2021 Mar; 37(2):e3079. PubMed ID: 32920987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of a miniaturized fluid array device for cell-free protein synthesis.
    Jackson K; Jin S; Fan ZH
    Biotechnol Bioeng; 2015 Dec; 112(12):2459-67. PubMed ID: 26037852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein synthesis yield increased 72 times in the cell-free PURE system.
    Jackson K; Kanamori T; Ueda T; Fan ZH
    Integr Biol (Camb); 2014 Aug; 6(8):781-8. PubMed ID: 25008400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication optimization of a miniaturized array device for cell-free protein synthesis.
    Khnouf R; Chapman BD; Fan ZH
    Electrophoresis; 2011 Nov; 32(22):3101-7. PubMed ID: 22038694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-Free Protein Synthesis in Miniaturized Array Devices and Effects of Device Orientation.
    Jackson K; Fan ZH
    J Lab Autom; 2014 Aug; 19(4):366-74. PubMed ID: 23989529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis.
    Hodgman CE; Jewett MC
    Biotechnol Bioeng; 2013 Oct; 110(10):2643-54. PubMed ID: 23832321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein synthesis in a device with nanoporous membranes and microchannels.
    Mei Q; Khnouf R; Simon A; Fan ZH
    Lab Chip; 2010 Oct; 10(19):2541-5. PubMed ID: 20730191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing cell-free protein expression in CHO: Assessing small molecule mass transfer effects in various reactor configurations.
    Peñalber-Johnstone C; Ge X; Tran K; Selock N; Sardesai N; Gurramkonda C; Pilli M; Tolosa M; Tolosa L; Kostov Y; Frey DD; Rao G
    Biotechnol Bioeng; 2017 Jul; 114(7):1478-1486. PubMed ID: 28266026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative polysome analysis identifies limitations in bacterial cell-free protein synthesis.
    Underwood KA; Swartz JR; Puglisi JD
    Biotechnol Bioeng; 2005 Aug; 91(4):425-35. PubMed ID: 15991235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin silicon membranes for wearable dialysis.
    Johnson DG; Khire TS; Lyubarskaya YL; Smith KJ; Desormeaux JP; Taylor JG; Gaborski TR; Shestopalov AA; Striemer CC; McGrath JL
    Adv Chronic Kidney Dis; 2013 Nov; 20(6):508-15. PubMed ID: 24206603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro biosynthesis of metal nanoparticles in microdroplets.
    Lee KG; Hong J; Wang KW; Heo NS; Kim DH; Lee SY; Lee SJ; Park TJ
    ACS Nano; 2012 Aug; 6(8):6998-7008. PubMed ID: 22769564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term maintenance of human hepatocytes in oxygen-permeable membrane bioreactor.
    De Bartolo L; Salerno S; Morelli S; Giorno L; Rende M; Memoli B; Procino A; Andreucci VE; Bader A; Drioli E
    Biomaterials; 2006 Sep; 27(27):4794-803. PubMed ID: 16753210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An actively mixed mini-bioreactor for protein production from suspended animal cells.
    Diao J; Young L; Zhou P; Shuler ML
    Biotechnol Bioeng; 2008 May; 100(1):72-81. PubMed ID: 18078290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous protein production in nanoporous, picolitre volume containers.
    Siuti P; Retterer ST; Doktycz MJ
    Lab Chip; 2011 Oct; 11(20):3523-9. PubMed ID: 21879140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip automation of cell-free protein synthesis: new opportunities due to a novel reaction mode.
    Georgi V; Georgi L; Blechert M; Bergmeister M; Zwanzig M; Wüstenhagen DA; Bier FF; Jung E; Kubick S
    Lab Chip; 2016 Jan; 16(2):269-81. PubMed ID: 26554896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically engineered Escherichia coli FBR5: part I. Comparison of high cell density bioreactors for enhanced ethanol production from xylose.
    Qureshi N; Dien BS; Liu S; Saha BC; Hector R; Cotta MA; Hughes S
    Biotechnol Prog; 2012; 28(5):1167-78. PubMed ID: 22736598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane.
    Kim DM; Choi CY
    Biotechnol Prog; 1996; 12(5):645-9. PubMed ID: 8879155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling pH gradients across nanocapillary array membranes connecting microfluidic channels.
    Fa K; Tulock JJ; Sweedler JV; Bohn PW
    J Am Chem Soc; 2005 Oct; 127(40):13928-33. PubMed ID: 16201814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.