BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26690959)

  • 1. Identification of miRNAs Involved in Reprogramming Acinar Cells into Insulin Producing Cells.
    Teichenne J; Morró M; Casellas A; Jimenez V; Tellez N; Leger A; Bosch F; Ayuso E
    PLoS One; 2015; 10(12):e0145116. PubMed ID: 26690959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprogramming of pancreatic exocrine cells towards a beta (β) cell character using Pdx1, Ngn3 and MafA.
    Akinci E; Banga A; Greder LV; Dutton JR; Slack JM
    Biochem J; 2012 Mar; 442(3):539-50. PubMed ID: 22150363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient differentiation of AR42J cells towards insulin-producing cells using pancreatic transcription factors in combination with growth factors.
    Lima MJ; Docherty HM; Chen Y; Docherty K
    Mol Cell Endocrinol; 2012 Jul; 358(1):69-80. PubMed ID: 22429991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-bound thyroid hormone receptor contributes to reprogramming of pancreatic acinar cells into insulin-producing cells.
    Furuya F; Shimura H; Asami K; Ichijo S; Takahashi K; Kaneshige M; Oikawa Y; Aida K; Endo T; Kobayashi T
    J Biol Chem; 2013 May; 288(22):16155-66. PubMed ID: 23595988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined expression of transcription factors induces AR42J-B13 cells to differentiate into insulin-producing cells.
    Ogihara T; Fujitani Y; Uchida T; Kanno R; Choi JB; Hirose T; Kawamori R; Watada H
    Endocr J; 2008 Aug; 55(4):691-8. PubMed ID: 18506085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional role of an islet transcription factor, INSM1/IA-1, on pancreatic acinar cell trans-differentiation.
    Zhang T; Saunee NA; Breslin MB; Song K; Lan MS
    J Cell Physiol; 2012 Jun; 227(6):2470-9. PubMed ID: 21830214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprogramming Mouse Cells With a Pancreatic Duct Phenotype to Insulin-Producing β-Like Cells.
    Yamada T; Cavelti-Weder C; Caballero F; Lysy PA; Guo L; Sharma A; Li W; Zhou Q; Bonner-Weir S; Weir GC
    Endocrinology; 2015 Jun; 156(6):2029-38. PubMed ID: 25836667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishing a Large-Animal Model for In Vivo Reprogramming of Bile Duct Cells into Insulin-Secreting Cells to Treat Diabetes.
    Hill CM; Banga A; Abrahante JE; Yuan C; Mutch LA; Janecek J; O'Brien T; Graham ML; Dutton JR
    Hum Gene Ther Clin Dev; 2017 Jun; 28(2):87-95. PubMed ID: 28363269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential introduction and dosage balance of defined transcription factors affect reprogramming efficiency from pancreatic duct cells into insulin-producing cells.
    Miyashita K; Miyatsuka T; Matsuoka TA; Sasaki S; Takebe S; Yasuda T; Watada H; Kaneto H; Shimomura I
    Biochem Biophys Res Commun; 2014 Feb; 444(4):514-9. PubMed ID: 24472553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stage specific reprogramming of mouse embryo liver cells to a beta cell-like phenotype.
    Yang Y; Akinci E; Dutton JR; Banga A; Slack JM
    Mech Dev; 2013; 130(11-12):602-12. PubMed ID: 23994012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgenic Expression of a Single Transcription Factor Pdx1 Induces Transdifferentiation of Pancreatic Acinar Cells to Endocrine Cells in Adult Mice.
    Miyazaki S; Tashiro F; Miyazaki J
    PLoS One; 2016; 11(8):e0161190. PubMed ID: 27526291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration.
    Zhu Y; Liu Q; Zhou Z; Ikeda Y
    Stem Cell Res Ther; 2017 Nov; 8(1):240. PubMed ID: 29096722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reprogramming human gallbladder cells into insulin-producing β-like cells.
    Galivo F; Benedetti E; Wang Y; Pelz C; Schug J; Kaestner KH; Grompe M
    PLoS One; 2017; 12(8):e0181812. PubMed ID: 28813430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reprogramming of Pancreatic Acinar Cells to Functional Beta Cells by In Vivo Transduction of a Polycistronic Construct Containing Pdx1, Ngn3, MafA in Mice.
    Cavelti-Weder C; Zumsteg A; Li W; Zhou Q
    Curr Protoc Stem Cell Biol; 2017 Feb; 40():4A.10.1-4A.10.12. PubMed ID: 28152182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-22 can reduce parathymosin expression in transdifferentiated hepatocytes.
    Chen HL; Huang JY; Chen CM; Chu TH; Shih C
    PLoS One; 2012; 7(4):e34116. PubMed ID: 22493679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocol for Studying Reprogramming of Mouse Pancreatic Acinar Cells to β-like Cells.
    Elhanani O; Walker MD
    STAR Protoc; 2020 Sep; 1(2):100096. PubMed ID: 33111125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA expression profiles of human iPSCs differentiation into insulin-producing cells.
    Sebastiani G; Valentini M; Grieco GE; Ventriglia G; Nigi L; Mancarella F; Pellegrini S; Martino G; Sordi V; Piemonti L; Dotta F
    Acta Diabetol; 2017 Mar; 54(3):265-281. PubMed ID: 28039581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentially expressed microRNA identification and target gene function analysis in starvation-induced autophagy of AR42J pancreatic acinar cells.
    Gao B; Wang D; Sun W; Meng X; Zhang W; Xue D
    Mol Med Rep; 2016 Jul; 14(1):590-8. PubMed ID: 27175615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription factor expression and hormone production in pancreatic AR42J cells.
    Palgi J; Stumpf E; Otonkoski T
    Mol Cell Endocrinol; 2000 Jul; 165(1-2):41-9. PubMed ID: 10940482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional role of MicroRNA-19b in acinar cell necrosis in acute necrotizing pancreatitis.
    Hu MX; Zhang HW; Fu Q; Qin T; Liu CJ; Wang YZ; Tang Q; Chen YX
    J Huazhong Univ Sci Technolog Med Sci; 2016 Apr; 36(2):221-225. PubMed ID: 27072966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.