These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26691010)

  • 1. Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe.
    Simons M; Pollard MR; Hughes CD; Ward AD; Van Houten B; Towrie M; Botchway SW; Parker AW; Kad NM
    Sci Rep; 2015 Dec; 5():18486. PubMed ID: 26691010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Optical Tweezers, DNA Tightropes, and Single-Molecule Fluorescence Imaging: Pitfalls and Traps.
    Wang J; Barnett JT; Pollard MR; Kad NM
    Methods Enzymol; 2017; 582():171-192. PubMed ID: 28062034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-Protein Interactions Studied Directly Using Single Molecule Fluorescence Imaging of Quantum Dot Tagged Proteins Moving on DNA Tightropes.
    Springall L; Inchingolo AV; Kad NM
    Methods Mol Biol; 2016; 1431():141-50. PubMed ID: 27283307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining optical tweezers and scanning probe microscopy to study DNA-protein interactions.
    Huisstede JH; Subramaniam V; Bennink ML
    Microsc Res Tech; 2007 Jan; 70(1):26-33. PubMed ID: 17080431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking of single quantum dot labeled EcoRV sliding along DNA manipulated by double optical tweezers.
    Biebricher A; Wende W; Escudé C; Pingoud A; Desbiolles P
    Biophys J; 2009 Apr; 96(8):L50-2. PubMed ID: 19383444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-quantum dot nanohybrids for bioanalytical applications.
    Lee JY; Kim JS; Park JC; Nam YS
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016; 8(2):178-90. PubMed ID: 25854126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking receptors using individual fluorescent and nonfluorescent nanolabels.
    Cognet L; Lounis B; Choquet D
    Cold Spring Harb Protoc; 2014 Feb; 2014(2):207-13. PubMed ID: 24492778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free free-solution nanoaperture optical tweezers for single molecule protein studies.
    Al Balushi AA; Kotnala A; Wheaton S; Gelfand RM; Rajashekara Y; Gordon R
    Analyst; 2015 Jul; 140(14):4760-78. PubMed ID: 25734189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions.
    Candelli A; Wuite GJ; Peterman EJ
    Phys Chem Chem Phys; 2011 Apr; 13(16):7263-72. PubMed ID: 21416086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A self-assembled quantum dot probe for detecting beta-lactamase activity.
    Xu C; Xing B; Rao J
    Biochem Biophys Res Commun; 2006 Jun; 344(3):931-5. PubMed ID: 16631595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Construction of Near Infrared Fluorescence Nanoprobe with Amphiphilic Protein-Polymer Bioconjugate for Targeted Cell Imaging.
    Liu Z; Chen N; Dong C; Li W; Guo W; Wang H; Wang S; Tan J; Tu Y; Chang J
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):18997-9005. PubMed ID: 26262596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking individual membrane proteins using quantum dots.
    Courty S; Dahan M
    Cold Spring Harb Protoc; 2013 Oct; 2013(10):925-7. PubMed ID: 24086060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles.
    Hamada M; Nakanishi S; Itoh T; Ishikawa M; Biju V
    ACS Nano; 2010 Aug; 4(8):4445-54. PubMed ID: 20731430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dot binding to DNA: single-molecule imaging with atomic force microscopy.
    Li K; Zhang W; Chen Y
    Biotechnol J; 2013 Jan; 8(1):110-6. PubMed ID: 22899656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing DNA with micro- and nanocapillaries and optical tweezers.
    Steinbock LJ; Otto O; Skarstam DR; Jahn S; Chimerel C; Gornall JL; Keyser UF
    J Phys Condens Matter; 2010 Nov; 22(45):454113. PubMed ID: 21339600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic microbead arrays for biosensing applications.
    Manesse M; Phillips AF; LaFratta CN; Palacios MA; Hayman RB; Walt DR
    Lab Chip; 2013 Jun; 13(11):2153-60. PubMed ID: 23615790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental phase diagram of negatively supercoiled DNA measured by magnetic tweezers and fluorescence.
    Vlijm R; Mashaghi A; Bernard S; Modesti M; Dekker C
    Nanoscale; 2015 Feb; 7(7):3205-16. PubMed ID: 25615283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly fluorescent magnetic quantum dot probe with superior colloidal stability.
    Basiruddin SK; Saha A; Sarkar R; Majumder M; Jana NR
    Nanoscale; 2010 Dec; 2(12):2561-4. PubMed ID: 20865204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of monovalent quantum dot-nucleic acid conjugates using magnetic beads.
    Uddayasankar U; Zhang Z; Shergill RT; Gradinaru CC; Krull UJ
    Bioconjug Chem; 2014 Jul; 25(7):1342-50. PubMed ID: 24927235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optically encoded nanoprobes using single walled carbon nanotube as the building scaffold for magnetic field guided cell imaging.
    Wang H; Wang Z; Ye M; Zong S; Li M; Chen P; Ma X; Cui Y
    Talanta; 2014 Feb; 119():144-50. PubMed ID: 24401396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.