These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 26691655)
41. A case of perioperative glucose control by using an artificial pancreas in a patient with glycogen storage disease. Yatabe T; Nakamura R; Kitagawa H; Munekage M; Hanazaki K J Artif Organs; 2016 Mar; 19(1):100-3. PubMed ID: 26194122 [TBL] [Abstract][Full Text] [Related]
42. Improving the Safety and Functionality of an Artificial Pancreas System for Use in Younger Children: Input from Parents and Physicians. Gildersleeve R; Riggs SL; Cherñavvsky DR; Breton MD; DeBoer MD Diabetes Technol Ther; 2017 Nov; 19(11):660-674. PubMed ID: 28854339 [TBL] [Abstract][Full Text] [Related]
43. Strict blood glucose control by an artificial endocrine pancreas during hepatectomy may prevent postoperative acute kidney injury. Mita N; Kawahito S; Soga T; Takaishi K; Kitahata H; Matsuhisa M; Shimada M; Kinoshita H; Tsutsumi YM; Tanaka K J Artif Organs; 2017 Mar; 20(1):76-83. PubMed ID: 27557726 [TBL] [Abstract][Full Text] [Related]
44. Glycaemic control in pancreatectomized dogs with a wearable artificial endocrine pancreas. Shichiri M; Kawamori R; Goriya Y; Yamasaki Y; Nomura M; Hakui N; Abe H Diabetologia; 1983 Mar; 24(3):179-84. PubMed ID: 6341145 [TBL] [Abstract][Full Text] [Related]
45. Control of blood glucose levels by an artificial pancreas in patients with severe coronavirus disease 2019 pneumonia. Tokuhira N; Uchiyama A; Hoshino T; Kubo N; Ishigaki S; Enokidani Y; Sakaguchi R; Koyama Y; Fujino Y Artif Organs; 2023 Jun; 47(6):990-998. PubMed ID: 36440971 [TBL] [Abstract][Full Text] [Related]
46. Injectable insulin-lysozyme-loaded nanogels with enzymatically-controlled degradation and release for basal insulin treatment: In vitro characterization and in vivo observation. Chou HS; Larsson M; Hsiao MH; Chen YC; Röding M; Nydén M; Liu DM J Control Release; 2016 Feb; 224():33-42. PubMed ID: 26723525 [TBL] [Abstract][Full Text] [Related]
47. A Fully Integrated Closed-Loop System Based on Mesoporous Microneedles-Iontophoresis for Diabetes Treatment. Li X; Huang X; Mo J; Wang H; Huang Q; Yang C; Zhang T; Chen HJ; Hang T; Liu F; Jiang L; Wu Q; Li H; Hu N; Xie X Adv Sci (Weinh); 2021 Aug; 8(16):e2100827. PubMed ID: 34081407 [TBL] [Abstract][Full Text] [Related]
48. Portable closed loop feedback system for control of the blood glucose level in the pig. Pierzynowski SG; Håkansson H; Ljunggren L; Mårtensson L; Olsson L Artif Organs; 1990 Apr; 14(2):118-21. PubMed ID: 2190543 [TBL] [Abstract][Full Text] [Related]
50. Normal response to pregnancy in rats cured of streptozotocin diabetes by transplantation of one fetal pancreas. Brown J; Heininger D; Kuret J; Mullen Y Diabetologia; 1982 Apr; 22(4):273-5. PubMed ID: 7047273 [TBL] [Abstract][Full Text] [Related]
51. Induction of Artificial Pancreas in Liver Transplant Recipients: Preliminary Experience with an Insightful Message. Hayashi H; Takamura H; Gabata R; Makino I; Ohbatake Y; Nakanuma S; Miyashita T; Tajima H; Hanazaki K; Ohta T Ann Transplant; 2017 Oct; 22():590-597. PubMed ID: 28970466 [TBL] [Abstract][Full Text] [Related]
52. Europe has to step up its efforts to produce innovative and safe diabetes technology. Cnop M; Klupa T; Tentolouris N; Novials A; Burcelin R; van Eimeren M Diabetologia; 2017 Dec; 60(12):2532-2533. PubMed ID: 28942556 [No Abstract] [Full Text] [Related]
53. In silico evaluation of an artificial pancreas combining exogenous ultrafast-acting technosphere insulin with zone model predictive control. Lee JJ; Dassau E; Zisser H; Harvey RA; Jovanovič L; Doyle FJ J Diabetes Sci Technol; 2013 Jan; 7(1):215-26. PubMed ID: 23439180 [TBL] [Abstract][Full Text] [Related]
54. Determination of peritoneal glucose kinetics in rats: implications for the peritoneal implantation of closed-loop insulin delivery systems. Velho G; Froguel P; Reach G Diabetologia; 1989 Jun; 32(6):331-6. PubMed ID: 2668080 [TBL] [Abstract][Full Text] [Related]
55. Hyperinsulinism complicating control of diabetes mellitus by an artificial beta-cell. Horwitz DL; Zeidler A; Gonen B; Jaspan JB Diabetes Care; 1980; 3(2):274-7. PubMed ID: 6993140 [TBL] [Abstract][Full Text] [Related]
56. Recent progress in mechanical artificial pancreas. Hoshino M; Haraguchi Y; Mizushima I; Sakai M J Artif Organs; 2009; 12(3):141-9. PubMed ID: 19894087 [TBL] [Abstract][Full Text] [Related]
58. Real-World Use of Open Source Artificial Pancreas Systems. Lewis D; Leibrand S; J Diabetes Sci Technol; 2016 Nov; 10(6):1411. PubMed ID: 27510442 [No Abstract] [Full Text] [Related]
59. Use of a physiologic pharmacokinetic model of glucose homeostasis for assessment of performance requirements for improved insulin therapies. Sorensen JT; Colton CK; Hillman RS; Soeldner JS Diabetes Care; 1982; 5(3):148-57. PubMed ID: 6756834 [TBL] [Abstract][Full Text] [Related]
60. Blood glucose control using a novel continuous blood glucose monitor and repetitive intravenous insulin boluses: exploiting natural insulin pulsatility as a principle for a future artificial pancreas. Skjaervold NK; Ostling D; Hjelme DR; Spigset O; Lyng O; Aadahl P Int J Endocrinol; 2013; 2013():245152. PubMed ID: 24369461 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]