These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26691693)

  • 1. New perspective on glycoside hydrolase binding to lignin from pretreated corn stover.
    Yarbrough JM; Mittal A; Mansfield E; Taylor LE; Hobdey SE; Sammond DW; Bomble YJ; Crowley MF; Decker SR; Himmel ME; Vinzant TB
    Biotechnol Biofuels; 2015; 8():214. PubMed ID: 26691693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification.
    Gao D; Haarmeyer C; Balan V; Whitehead TA; Dale BE; Chundawat SP
    Biotechnol Biofuels; 2014; 7(1):175. PubMed ID: 25530803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover.
    Pribowo A; Arantes V; Saddler JN
    Enzyme Microb Technol; 2012 Mar; 50(3):195-203. PubMed ID: 22305175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin.
    Haven MO; Jørgensen H
    Biotechnol Biofuels; 2013 Nov; 6(1):165. PubMed ID: 24274678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water.
    Lu X; Zheng X; Li X; Zhao J
    Biotechnol Biofuels; 2016; 9():118. PubMed ID: 27274766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding.
    Rahikainen JL; Evans JD; Mikander S; Kalliola A; Puranen T; Tamminen T; Marjamaa K; Kruus K
    Enzyme Microb Technol; 2013 Oct; 53(5):315-21. PubMed ID: 24034430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods.
    Ko JK; Ximenes E; Kim Y; Ladisch MR
    Biotechnol Bioeng; 2015 Mar; 112(3):447-56. PubMed ID: 25116138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymes in Commercial Cellulase Preparations Bind Differently to Dioxane Extracted Lignins.
    Yarbrough JM; Mittal A; Katahira R; Mansfield E; Taylor LE; Decker SR; Himmel ME; Vinzant T
    Curr Biotechnol; 2017; 6(2):128-138. PubMed ID: 29732275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Jun; 103(2):252-67. PubMed ID: 19195015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism.
    Guo F; Shi W; Sun W; Li X; Wang F; Zhao J; Qu Y
    Biotechnol Biofuels; 2014 Mar; 7(1):38. PubMed ID: 24624960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effect of lignin on the hydrolysis of xylan by thermophilic and thermolabile GH11 xylanases.
    Kellock M; Rahikainen J; Borisova AS; Voutilainen S; Koivula A; Kruus K; Marjamaa K
    Biotechnol Biofuels Bioprod; 2022 May; 15(1):49. PubMed ID: 35568899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pretreatment Affects Profits From Xylanase During Enzymatic Saccharification of Corn Stover Through Changing the Interaction Between Lignin and Xylanase Protein.
    Feng X; Yao Y; Xu N; Jia H; Li X; Zhao J; Chen S; Qu Y
    Front Microbiol; 2021; 12():754593. PubMed ID: 35002999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.
    Várnai A; Viikari L; Marjamaa K; Siika-aho M
    Bioresour Technol; 2011 Jan; 102(2):1220-7. PubMed ID: 20736135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignin-derived inhibition of monocomponent cellulases and a xylanase in the hydrolysis of lignocellulosics.
    Kellock M; Rahikainen J; Marjamaa K; Kruus K
    Bioresour Technol; 2017 May; 232():183-191. PubMed ID: 28231536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2006 Jul; 94(4):611-7. PubMed ID: 16673419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of cellulolytic enzyme components through engineering
    Li YH; Zhang XY; Zhang F; Peng LC; Zhang DB; Kondo A; Bai FW; Zhao XQ
    Biotechnol Biofuels; 2018; 11():49. PubMed ID: 29483942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.
    Strobel KL; Pfeiffer KA; Blanch HW; Clark DS
    J Biol Chem; 2015 Sep; 290(37):22818-26. PubMed ID: 26209638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing.
    Rodrigues AC; Haven MØ; Lindedam J; Felby C; Gama M
    Enzyme Microb Technol; 2015 Nov; 79-80():70-7. PubMed ID: 26320717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate.
    Lou H; Wang M; Lai H; Lin X; Zhou M; Yang D; Qiu X
    Bioresour Technol; 2013 Oct; 146():478-484. PubMed ID: 23958680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic
    Wang K; Cao R; Wang M; Lin Q; Zhan R; Xu H; Wang S
    Biotechnol Biofuels; 2019; 12():48. PubMed ID: 30899328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.