BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26691855)

  • 1. Integrated Microfluidic System for Size-Based Selection and Trapping of Giant Vesicles.
    Kazayama Y; Teshima T; Osaki T; Takeuchi S; Toyota T
    Anal Chem; 2016 Jan; 88(2):1111-6. PubMed ID: 26691855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array.
    Hood RR; DeVoe DL; Atencia J; Vreeland WN; Omiatek DM
    Lab Chip; 2014 Jul; 14(14):2403-9. PubMed ID: 24825622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems.
    Mijajlovic M; Wright D; Zivkovic V; Bi JX; Biggs MJ
    Colloids Surf B Biointerfaces; 2013 Apr; 104():276-81. PubMed ID: 23334181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput continuous production of liposomes using hydrodynamic flow-focusing microfluidic devices.
    Michelon M; Oliveira DRB; de Figueiredo Furtado G; Gaziola de la Torre L; Cunha RL
    Colloids Surf B Biointerfaces; 2017 Aug; 156():349-357. PubMed ID: 28549322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ transmission electron microscopy of liposomes in an aqueous environment.
    Hoppe SM; Sasaki DY; Kinghorn AN; Hattar K
    Langmuir; 2013 Aug; 29(32):9958-61. PubMed ID: 23886420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy.
    Balbino TA; Azzoni AR; de la Torre LG
    Colloids Surf B Biointerfaces; 2013 Nov; 111():203-10. PubMed ID: 23811421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic filtration in microfluidic channels as size-selection process for giant unilamellar vesicles.
    Woo Y; Heo Y; Shin K; Yi GR
    J Biomed Nanotechnol; 2013 Apr; 9(4):610-4. PubMed ID: 23621019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid liposome quality assessment using a lab-on-a-chip.
    Birnbaumer G; Küpcü S; Jungreuthmayer C; Richter L; Vorauer-Uhl K; Wagner A; Valenta C; Sleytr U; Ertl P
    Lab Chip; 2011 Aug; 11(16):2753-62. PubMed ID: 21691661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic mixing and the formation of nanoscale lipid vesicles.
    Jahn A; Stavis SM; Hong JS; Vreeland WN; DeVoe DL; Gaitan M
    ACS Nano; 2010 Apr; 4(4):2077-87. PubMed ID: 20356060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic methods for forming liposomes.
    van Swaay D; deMello A
    Lab Chip; 2013 Mar; 13(5):752-67. PubMed ID: 23291662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of monodisperse liposomes-in-microgel hybrid microparticles in capillary-based microfluidic devices.
    Jeong ES; Son HA; Kim MK; Park KH; Kay S; Chae PS; Kim JW
    Colloids Surf B Biointerfaces; 2014 Nov; 123():339-44. PubMed ID: 25288532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of micro-mixing on the size of liposomes self-assembled from miscible liquid phases.
    Phapal SM; Sunthar P
    Chem Phys Lipids; 2013; 172-173():20-30. PubMed ID: 23669147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms.
    Andar AU; Hood RR; Vreeland WN; Devoe DL; Swaan PW
    Pharm Res; 2014 Feb; 31(2):401-13. PubMed ID: 24092051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic lift of vesicles and red blood cells in flow--from Fåhræus & Lindqvist to microfluidic cell sorting.
    Geislinger TM; Franke T
    Adv Colloid Interface Sci; 2014 Jun; 208():161-76. PubMed ID: 24674656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic device for electrofusion of biological vesicles.
    Tresset G; Takeuchi S
    Biomed Microdevices; 2004 Sep; 6(3):213-8. PubMed ID: 15377830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating microfluidic generation, handling and analysis of biomimetic giant unilamellar vesicles.
    Paterson DJ; Reboud J; Wilson R; Tassieri M; Cooper JM
    Lab Chip; 2014 Jun; 14(11):1806-10. PubMed ID: 24789498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liposome production and concurrent loading of drug simulants by microfluidic hydrodynamic focusing.
    Lin WS; Malmstadt N
    Eur Biophys J; 2019 Sep; 48(6):549-558. PubMed ID: 31327019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freezing continuous-flow self-assembly in a microfluidic device: toward imaging of liposome formation.
    Jahn A; Lucas F; Wepf RA; Dittrich PS
    Langmuir; 2013 Feb; 29(5):1717-23. PubMed ID: 23289615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic platforms with monolithically integrated hierarchical apertures for the facile and rapid formation of cargo-carrying vesicles.
    Cho H; Kim J; Suga K; Ishigami T; Park H; Bang JW; Seo S; Choi M; Chang PS; Umakoshi H; Jung HS; Suh KY
    Lab Chip; 2015 Jan; 15(2):373-7. PubMed ID: 25422046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.