BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26691899)

  • 21. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues.
    Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z
    Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Modeling the Reaction Mechanism of Serine-Carboxyl Peptidases.
    Bravaya K; Bochenkova A; Grigorenko B; Topol I; Burt S; Nemukhin A
    J Chem Theory Comput; 2006 Jul; 2(4):1168-75. PubMed ID: 26633073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary relationships between seryl-histidine dipeptide and modern serine proteases from the analysis based on mass spectrometry and bioinformatics.
    Liu Y; Li YB; Gao X; Yu YF; Liu XX; Ji ZL; Ma Y; Li YM; Zhao YF
    Amino Acids; 2018 Jan; 50(1):69-77. PubMed ID: 29071530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate-assisted catalytic mechanism of O-GlcNAc transferase discovered by quantum mechanics/molecular mechanics investigation.
    Tvaroška I; Kozmon S; Wimmerová M; Koča J
    J Am Chem Soc; 2012 Sep; 134(37):15563-71. PubMed ID: 22928765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of catalytic mechanism of serine proteases. Viability of the ring-flip hypothesis.
    Scheiner S
    J Phys Chem B; 2008 Jun; 112(22):6837-46. PubMed ID: 18461994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular and biochemical characterisation of a dual proteolytic system in vine weevil larvae (Otiorhynchus sulcatus Coleoptera: Curculionidae).
    Edwards MG; Gatehouse JA; Gatehouse AM
    Insect Biochem Mol Biol; 2010 Nov; 40(11):785-91. PubMed ID: 20709171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase.
    Topf M; Richards WG
    J Am Chem Soc; 2004 Nov; 126(44):14631-41. PubMed ID: 15521783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate.
    Wilmouth RC; Edman K; Neutze R; Wright PA; Clifton IJ; Schneider TR; Schofield CJ; Hajdu J
    Nat Struct Biol; 2001 Aug; 8(8):689-94. PubMed ID: 11473259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reaction mechanism of the dengue virus serine protease: a QM/MM study.
    Lima MC; Seabra GM
    Phys Chem Chem Phys; 2016 Nov; 18(44):30288-30296. PubMed ID: 27341353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pKa, MM, and QM studies of mechanisms of beta-lactamases and penicillin-binding proteins: acylation step.
    Massova I; Kollman PA
    J Comput Chem; 2002 Dec; 23(16):1559-76. PubMed ID: 12395425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of action of serine proteases: tetrahedral intermediate and concerted proton transfer.
    Hunkapiller MW; Forgac MD; Richards JH
    Biochemistry; 1976 Dec; 15(25):5581-8. PubMed ID: 999831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linear Discriminant Analysis for the in Silico Discovery of Mechanism-Based Reversible Covalent Inhibitors of a Serine Protease: Application of Hydration Thermodynamics Analysis and Semi-empirical Molecular Orbital Calculation.
    Masuda Y; Yoshida T; Yamaotsu N; Hirono S
    Chem Pharm Bull (Tokyo); 2018; 66(4):399-409. PubMed ID: 29607905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A QM/MM MD study of the pH-dependent ring-opening catalysis and lid motif flexibility in glucosamine 6-phosphate deaminase.
    Zhao Y; Chen N; Wu R; Cao Z
    Phys Chem Chem Phys; 2014 Sep; 16(34):18406-17. PubMed ID: 25069951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic mechanism of glycosyltransferases: hybrid quantum mechanical/molecular mechanical study of the inverting N-acetylglucosaminyltransferase I.
    Kozmon S; Tvaroska I
    J Am Chem Soc; 2006 Dec; 128(51):16921-7. PubMed ID: 17177443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics and density functional theory studies of substrate binding and catalysis of human brain aspartoacylase.
    Zhang CH; Gao JY; Chen ZQ; Xue Y
    J Mol Graph Model; 2010 Jun; 28(8):799-806. PubMed ID: 20227313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzyme molecular mechanism as a starting point to design new inhibitors: a theoretical study of O-GlcNAcase.
    Lameira J; Alves CN; Tuñón I; Martí S; Moliner V
    J Phys Chem B; 2011 May; 115(20):6764-75. PubMed ID: 21542586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peroxo-iron mediated deformylation in sterol 14alpha-demethylase catalysis.
    Sen K; Hackett JC
    J Am Chem Soc; 2010 Aug; 132(30):10293-305. PubMed ID: 20662512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin.
    Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD
    J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active site dynamics of acyl-chymotrypsin.
    Nakagawa S; Yu HA; Karplus M; Umeyama H
    Proteins; 1993 Jun; 16(2):172-94. PubMed ID: 8332606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanism of papain inhibition by peptidyl aldehydes.
    Shokhen M; Khazanov N; Albeck A
    Proteins; 2011 Mar; 79(3):975-85. PubMed ID: 21181719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.