BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26691899)

  • 61. Insights into the phosphoryl-transfer mechanism of cAMP-dependent protein kinase from quantum chemical calculations and molecular dynamics simulations.
    Díaz N; Field MJ
    J Am Chem Soc; 2004 Jan; 126(2):529-42. PubMed ID: 14719950
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Insight derived from molecular dynamics simulation into dynamics and molecular motions of cuticle-degrading serine protease Ver112.
    Yang LQ; Chen GY; Li Y; Zhang RP; Liu SQ; Sang P
    J Biomol Struct Dyn; 2019 May; 37(8):2004-2016. PubMed ID: 29718761
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular orbital studies of enzyme activity: I: Charge relay system and tetrahedral intermediate in acylation of serine proteinases.
    Scheiner S; Kleier DA; Lipscomb WN
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2606-10. PubMed ID: 1058476
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Acetylcholinesterase: mechanisms of covalent inhibition of H447I mutant determined by computational analyses.
    Cheng YH; Cheng XL; Radić Z; McCammon JA
    Chem Biol Interact; 2008 Sep; 175(1-3):196-9. PubMed ID: 18657802
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mechanisms of Proteolytic Enzymes and Their Inhibition in QM/MM Studies.
    Elsässer B; Goettig P
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33810118
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Discrete Dynamics of Warhead Modulation on Covalent Inhibition of Oxyr: A QM/MM Study.
    Zaman N; Azam SS
    J Phys Chem B; 2023 Jul; 127(27):5993-6005. PubMed ID: 37377002
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Serine and Cysteine Peptidases: So Similar, Yet Different. How the Active-Site Electrostatics Facilitates Different Reaction Mechanisms.
    Gisdon FJ; Bombarda E; Ullmann GM
    J Phys Chem B; 2022 Jun; 126(22):4035-4048. PubMed ID: 35609250
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mechanism and biomass association of glucuronoyl esterase: an α/β hydrolase with potential in biomass conversion.
    Zong Z; Mazurkewich S; Pereira CS; Fu H; Cai W; Shao X; Skaf MS; Larsbrink J; Lo Leggio L
    Nat Commun; 2022 Mar; 13(1):1449. PubMed ID: 35304453
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Enzyme-substrate interaction in the catalytic triad of serine proteases: increase in the pKa of Asp102.
    Neuvonen H
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):351-2. PubMed ID: 9078283
    [No Abstract]   [Full Text] [Related]  

  • 70. Modeling and structural analysis of evolutionarily diverse S8 family serine proteases.
    Laskar A; Rodger EJ; Chatterjee A; Mandal C
    Bioinformation; 2011; 7(5):239-45. PubMed ID: 22125392
    [TBL] [Abstract][Full Text] [Related]  

  • 71. On the inactivity of thiol-subtilisin. The role of the intramolecular electric field.
    Van Duijnen PT
    Biophys Chem; 1981 Apr; 13(2):133-9. PubMed ID: 17000163
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Exploring the pH-Dependent Structure-Dynamics-Function Relationship of Human Renin.
    Ma S; Henderson JA; Shen J
    J Chem Inf Model; 2021 Jan; 61(1):400-407. PubMed ID: 33356221
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Strong N-H⋅⋅⋅O Hydrogen Bonding in a Model Compound of the Catalytic Triad in Serine Proteases.
    Overgaard J; Schiøtt B; Larsen FK; Schultz AJ; MacDonald JC; Iversen BB
    Angew Chem Int Ed Engl; 1999 May; 38(9):1239-1242. PubMed ID: 29711723
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The catalytic effect of the NH3 base on the chemical events in the caryolene-forming carbocation cascade.
    Ortega DE; Nguyen QN; Tantillo DJ; Toro-Labbé A
    J Comput Chem; 2016 May; 37(12):1068-81. PubMed ID: 26833740
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Capturing Covalent Catalytic Intermediates by Enzyme Mutants: Recent Advances in Methodologies and Applications.
    Wang Y; Tang S
    Chembiochem; 2023 May; 24(10):e202300036. PubMed ID: 36866719
    [TBL] [Abstract][Full Text] [Related]  

  • 76. On the mechanism of proton transfer in the catalysis by serine proteases.
    Polgár L
    J Theor Biol; 1971 Apr; 31(1):165-9. PubMed ID: 5576773
    [No Abstract]   [Full Text] [Related]  

  • 77. Editorial: Challenges in Computational Enzymology.
    Moliner V; Himo F
    Front Chem; 2019; 7():690. PubMed ID: 31696108
    [No Abstract]   [Full Text] [Related]  

  • 78. Special Issue on Contemporary Challenges in Catalysis.
    Buchmeiser MR
    Chemistry; 2021 Dec; 27(68):16808. PubMed ID: 34873780
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nucleophilic substitutions on silane cation radicals: stepwise or concerted?
    de Lijser HJ; Snelgrove DW; Dinnocenzo JP
    J Am Chem Soc; 2001 Oct; 123(39):9698-9. PubMed ID: 11572701
    [No Abstract]   [Full Text] [Related]  

  • 80. The mechanisms of contact catalytic reactions.
    BREMNER JG
    Research; 1948 Mar; 1(6):281-5. PubMed ID: 18910024
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.