BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26692330)

  • 21. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer.
    Längst G; Bonte EJ; Corona DF; Becker PB
    Cell; 1999 Jun; 97(7):843-52. PubMed ID: 10399913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes.
    Clapier CR; Cairns BR
    Nature; 2012 Dec; 492(7428):280-4. PubMed ID: 23143334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and regulation of the chromatin remodeller ISWI.
    Yan L; Wang L; Tian Y; Xia X; Chen Z
    Nature; 2016 Dec; 540(7633):466-469. PubMed ID: 27919072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic control of nucleosome displacement by ISWI/ACF chromatin remodelers.
    Florescu AM; Schiessel H; Blossey R
    Phys Rev Lett; 2012 Sep; 109(11):118103. PubMed ID: 23005680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro.
    Vettese-Dadey M; Grant PA; Hebbes TR; Crane- Robinson C; Allis CD; Workman JL
    EMBO J; 1996 May; 15(10):2508-18. PubMed ID: 8665858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional antagonism between Sas3 and Gcn5 acetyltransferases and ISWI chromatin remodelers.
    Lafon A; Petty E; Pillus L
    PLoS Genet; 2012; 8(10):e1002994. PubMed ID: 23055944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference.
    Dann GP; Liszczak GP; Bagert JD; Müller MM; Nguyen UTT; Wojcik F; Brown ZZ; Bos J; Panchenko T; Pihl R; Pollock SB; Diehl KL; Allis CD; Muir TW
    Nature; 2017 Aug; 548(7669):607-611. PubMed ID: 28767641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Histone H4 K16Q mutation, an acetylation mimic, causes structural disorder of its N-terminal basic patch in the nucleosome.
    Zhou BR; Feng H; Ghirlando R; Kato H; Gruschus J; Bai Y
    J Mol Biol; 2012 Aug; 421(1):30-7. PubMed ID: 22575889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple and versatile system for the ATP-dependent assembly of chromatin.
    Khuong MT; Fei J; Cruz-Becerra G; Kadonaga JT
    J Biol Chem; 2017 Nov; 292(47):19478-19490. PubMed ID: 28982979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2.
    Kassabov SR; Henry NM; Zofall M; Tsukiyama T; Bartholomew B
    Mol Cell Biol; 2002 Nov; 22(21):7524-34. PubMed ID: 12370299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Balancing chromatin remodeling and histone modifications in transcription.
    Petty E; Pillus L
    Trends Genet; 2013 Nov; 29(11):621-9. PubMed ID: 23870137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remodeling and Repositioning of Nucleosomes in Nucleosomal Arrays.
    Ludwigsen J; Hepp N; Klinker H; Pfennig S; Mueller-Planitz F
    Methods Mol Biol; 2018; 1805():349-370. PubMed ID: 29971727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disparity in the DNA translocase domains of SWI/SNF and ISW2.
    Dechassa ML; Hota SK; Sen P; Chatterjee N; Prasad P; Bartholomew B
    Nucleic Acids Res; 2012 May; 40(10):4412-21. PubMed ID: 22298509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nano-scale analyses of the chromatin decompaction induced by histone acetylation.
    Hizume K; Araki S; Hata K; Prieto E; Kundu TK; Yoshikawa K; Takeyasu K
    Arch Histol Cytol; 2010; 73(3):149-63. PubMed ID: 22572182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of the primed state of the ATPase domain of chromatin remodeling factor ISWI bound to the nucleosome.
    Chittori S; Hong J; Bai Y; Subramaniam S
    Nucleic Acids Res; 2019 Sep; 47(17):9400-9409. PubMed ID: 31402386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2.
    Gangaraju VK; Prasad P; Srour A; Kagalwala MN; Bartholomew B
    Mol Cell; 2009 Jul; 35(1):58-69. PubMed ID: 19595716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expansion of the ISWI chromatin remodeler family with new active complexes.
    Oppikofer M; Bai T; Gan Y; Haley B; Liu P; Sandoval W; Ciferri C; Cochran AG
    EMBO Rep; 2017 Oct; 18(10):1697-1706. PubMed ID: 28801535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA.
    Hwang WL; Deindl S; Harada BT; Zhuang X
    Nature; 2014 Aug; 512(7513):213-7. PubMed ID: 25043036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms for nucleosome movement by ATP-dependent chromatin remodeling complexes.
    Saha A; Wittmeyer J; Cairns BR
    Results Probl Cell Differ; 2006; 41():127-48. PubMed ID: 16909894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h.
    Gamarra N; Johnson SL; Trnka MJ; Burlingame AL; Narlikar GJ
    Elife; 2018 Apr; 7():. PubMed ID: 29664398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.