These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 26692330)
21. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Längst G; Bonte EJ; Corona DF; Becker PB Cell; 1999 Jun; 97(7):843-52. PubMed ID: 10399913 [TBL] [Abstract][Full Text] [Related]
23. Structure and regulation of the chromatin remodeller ISWI. Yan L; Wang L; Tian Y; Xia X; Chen Z Nature; 2016 Dec; 540(7633):466-469. PubMed ID: 27919072 [TBL] [Abstract][Full Text] [Related]
24. Kinetic control of nucleosome displacement by ISWI/ACF chromatin remodelers. Florescu AM; Schiessel H; Blossey R Phys Rev Lett; 2012 Sep; 109(11):118103. PubMed ID: 23005680 [TBL] [Abstract][Full Text] [Related]
25. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. Vettese-Dadey M; Grant PA; Hebbes TR; Crane- Robinson C; Allis CD; Workman JL EMBO J; 1996 May; 15(10):2508-18. PubMed ID: 8665858 [TBL] [Abstract][Full Text] [Related]
26. Functional antagonism between Sas3 and Gcn5 acetyltransferases and ISWI chromatin remodelers. Lafon A; Petty E; Pillus L PLoS Genet; 2012; 8(10):e1002994. PubMed ID: 23055944 [TBL] [Abstract][Full Text] [Related]
28. Histone H4 K16Q mutation, an acetylation mimic, causes structural disorder of its N-terminal basic patch in the nucleosome. Zhou BR; Feng H; Ghirlando R; Kato H; Gruschus J; Bai Y J Mol Biol; 2012 Aug; 421(1):30-7. PubMed ID: 22575889 [TBL] [Abstract][Full Text] [Related]
29. A simple and versatile system for the ATP-dependent assembly of chromatin. Khuong MT; Fei J; Cruz-Becerra G; Kadonaga JT J Biol Chem; 2017 Nov; 292(47):19478-19490. PubMed ID: 28982979 [TBL] [Abstract][Full Text] [Related]
30. High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2. Kassabov SR; Henry NM; Zofall M; Tsukiyama T; Bartholomew B Mol Cell Biol; 2002 Nov; 22(21):7524-34. PubMed ID: 12370299 [TBL] [Abstract][Full Text] [Related]
31. Balancing chromatin remodeling and histone modifications in transcription. Petty E; Pillus L Trends Genet; 2013 Nov; 29(11):621-9. PubMed ID: 23870137 [TBL] [Abstract][Full Text] [Related]
32. Remodeling and Repositioning of Nucleosomes in Nucleosomal Arrays. Ludwigsen J; Hepp N; Klinker H; Pfennig S; Mueller-Planitz F Methods Mol Biol; 2018; 1805():349-370. PubMed ID: 29971727 [TBL] [Abstract][Full Text] [Related]
33. Disparity in the DNA translocase domains of SWI/SNF and ISW2. Dechassa ML; Hota SK; Sen P; Chatterjee N; Prasad P; Bartholomew B Nucleic Acids Res; 2012 May; 40(10):4412-21. PubMed ID: 22298509 [TBL] [Abstract][Full Text] [Related]
34. Nano-scale analyses of the chromatin decompaction induced by histone acetylation. Hizume K; Araki S; Hata K; Prieto E; Kundu TK; Yoshikawa K; Takeyasu K Arch Histol Cytol; 2010; 73(3):149-63. PubMed ID: 22572182 [TBL] [Abstract][Full Text] [Related]
35. Structure of the primed state of the ATPase domain of chromatin remodeling factor ISWI bound to the nucleosome. Chittori S; Hong J; Bai Y; Subramaniam S Nucleic Acids Res; 2019 Sep; 47(17):9400-9409. PubMed ID: 31402386 [TBL] [Abstract][Full Text] [Related]
36. Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Gangaraju VK; Prasad P; Srour A; Kagalwala MN; Bartholomew B Mol Cell; 2009 Jul; 35(1):58-69. PubMed ID: 19595716 [TBL] [Abstract][Full Text] [Related]
37. Expansion of the ISWI chromatin remodeler family with new active complexes. Oppikofer M; Bai T; Gan Y; Haley B; Liu P; Sandoval W; Ciferri C; Cochran AG EMBO Rep; 2017 Oct; 18(10):1697-1706. PubMed ID: 28801535 [TBL] [Abstract][Full Text] [Related]