BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 26692345)

  • 61. Enhanced high rate capability of Li intercalation in planar and edge defect-rich MoS
    Budumuru AK; Rakesh B; Sudakar C
    Nanoscale; 2019 May; 11(18):8882-8897. PubMed ID: 31016303
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Self-Assembly-Induced Alternately Stacked Single-Layer MoS2 and N-doped Graphene: A Novel van der Waals Heterostructure for Lithium-Ion Batteries.
    Zhao C; Wang X; Kong J; Ang JM; Lee PS; Liu Z; Lu X
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2372-9. PubMed ID: 26745784
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery.
    Li W; Yang Y; Zhang G; Zhang YW
    Nano Lett; 2015 Mar; 15(3):1691-7. PubMed ID: 25664808
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hexagonal Ti
    Bo T; Liu PF; Xu J; Zhang J; Chen Y; Eriksson O; Wang F; Wang BT
    Phys Chem Chem Phys; 2018 Aug; 20(34):22168-22178. PubMed ID: 30116799
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Density functional theory prediction of Mg
    Xiong L; Hu J; Yu S; Wu M; Xu B; Ouyang C
    Phys Chem Chem Phys; 2019 Mar; 21(13):7053-7060. PubMed ID: 30874256
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Penta-BCN monolayer with high specific capacity and mobility as a compelling anode material for rechargeable batteries.
    Chen L; Yang M; Kong F; Du W; Guo J; Shu H
    Phys Chem Chem Phys; 2021 Aug; 23(32):17693-17702. PubMed ID: 34374399
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Metallic MoN Layer and its Application as Anode for Lithium-ion Batteries.
    Zhang Q; Ma J; Lei M; Quhe R
    Nanotechnology; 2018 Feb; ():. PubMed ID: 29406304
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Monolayer molybdenum diborides containing flat and buckled boride layers as anode materials for lithium-ion batteries.
    Barik G; Pal S
    Phys Chem Chem Phys; 2023 Jul; 25(26):17667-17679. PubMed ID: 37366646
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection.
    Chang YH; Zhang W; Zhu Y; Han Y; Pu J; Chang JK; Hsu WT; Huang JK; Hsu CL; Chiu MH; Takenobu T; Li H; Wu CI; Chang WH; Wee AT; Li LJ
    ACS Nano; 2014 Aug; 8(8):8582-90. PubMed ID: 25094022
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Effect of VMoS3 Point Defect on the Elastic Properties of Monolayer MoS2 with REBO Potentials.
    Li M; Wan Y; Tu L; Yang Y; Lou J
    Nanoscale Res Lett; 2016 Dec; 11(1):155. PubMed ID: 27000023
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ultrahigh sensitivity with excellent recovery time for NH
    Chaurasiya R; Dixit A
    Phys Chem Chem Phys; 2020 Jul; 22(25):13903-13922. PubMed ID: 32542298
    [TBL] [Abstract][Full Text] [Related]  

  • 72. First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries.
    Guo GC; Wang D; Wei XL; Zhang Q; Liu H; Lau WM; Liu LM
    J Phys Chem Lett; 2015 Dec; 6(24):5002-8. PubMed ID: 26623923
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A new high capacity cathode material for Li/Na-ion batteries: dihafnium sulfide (Hf
    Kadioglu Y
    Phys Chem Chem Phys; 2023 Jan; 25(2):1114-1122. PubMed ID: 36514921
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cluster Formation Effect of Water on Pristine and Defective MoS
    Wang K; Paulus B
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36677982
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer.
    Tang Q; Zhou Z; Shen P
    J Am Chem Soc; 2012 Oct; 134(40):16909-16. PubMed ID: 22989058
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Constructing Highly Oriented Configuration by Few-Layer MoS2: Toward High-Performance Lithium-Ion Batteries and Hydrogen Evolution Reactions.
    Zhang S; Chowdari BV; Wen Z; Jin J; Yang J
    ACS Nano; 2015 Dec; 9(12):12464-72. PubMed ID: 26549425
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mechanical Properties of Monolayer MoS
    Akhter MJ; Kuś W; Mrozek A; Burczyński T
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183101
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Density Functional Theory Study of Bilayer Borophene-Based Anode Material for Rechargeable Lithium Ion Batteries.
    Gao N; Ye P; Chen J; Xiao J; Yang X
    Langmuir; 2023 Jul; 39(29):10270-10279. PubMed ID: 37439717
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Monolayer PC
    Fan K; Ying Y; Luo X; Huang H
    Phys Chem Chem Phys; 2020 Aug; 22(29):16665-16671. PubMed ID: 32658220
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ultrathin MoS₂ Nanosheets Supported on N-doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties.
    Yu XY; Hu H; Wang Y; Chen H; Lou XW
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7395-8. PubMed ID: 25939884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.