These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26692373)

  • 1. Selective reduction of carbon dioxide to bis(silyl)acetal catalyzed by a PBP-supported nickel complex.
    Ríos P; Curado N; López-Serrano J; Rodríguez A
    Chem Commun (Camb); 2016 Feb; 52(10):2114-7. PubMed ID: 26692373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional theory mechanistic study of the reduction of CO2 to CH4 catalyzed by an ammonium hydridoborate ion pair: CO2 activation via formation of a formic acid entity.
    Wen M; Huang F; Lu G; Wang ZX
    Inorg Chem; 2013 Oct; 52(20):12098-107. PubMed ID: 24087841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boryl-metal bonds facilitate cobalt/nickel-catalyzed olefin hydrogenation.
    Lin TP; Peters JC
    J Am Chem Soc; 2014 Oct; 136(39):13672-83. PubMed ID: 25181350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism Insights into the Iridium(III)- and B(C
    Guzmán J; Urriolabeitia A; Padilla M; García-Orduña P; Polo V; Fernández-Alvarez FJ
    Inorg Chem; 2022 Dec; 61(50):20216-20221. PubMed ID: 36472385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrosilylative reduction of carbon dioxide by a homoleptic lanthanum aryloxide catalyst with high activity and selectivity.
    Chang K; Del Rosal I; Zheng X; Maron L; Xu X
    Dalton Trans; 2021 Jun; 50(22):7804-7809. PubMed ID: 34100492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc and Magnesium Catalysts for the Hydrosilylation of Carbon Dioxide.
    Rauch M; Parkin G
    J Am Chem Soc; 2017 Dec; 139(50):18162-18165. PubMed ID: 29226678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic CO2 activation assisted by rhenium hydride/B(C6F5)3 frustrated Lewis pairs--metal hydrides functioning as FLP bases.
    Jiang Y; Blacque O; Fox T; Berke H
    J Am Chem Soc; 2013 May; 135(20):7751-60. PubMed ID: 23617739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Conversion of Carbon Dioxide to Formaldehyde via a Bis(silyl)acetal: Incorporation of Isotopically Labeled C
    Rauch M; Strater Z; Parkin G
    J Am Chem Soc; 2019 Nov; 141(44):17754-17762. PubMed ID: 31638772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient alkene hydrosilation with bis(8-quinolyl)phosphine (NPN) nickel catalysts. The dominant role of silyl-over hydrido-nickel catalytic intermediates.
    Yang J; Postils V; Lipschutz MI; Fasulo M; Raynaud C; Clot E; Eisenstein O; Tilley TD
    Chem Sci; 2020 Apr; 11(19):5043-5051. PubMed ID: 34122961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Boron-Catalyzed N-Alkylation of Amines with Carboxylic Acids.
    Zhang Q; Fu MC; Yu HZ; Fu Y
    J Org Chem; 2016 Aug; 81(15):6235-43. PubMed ID: 27441997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From carbon dioxide to methane: homogeneous reduction of carbon dioxide with hydrosilanes catalyzed by zirconium-borane complexes.
    Matsuo T; Kawaguchi H
    J Am Chem Soc; 2006 Sep; 128(38):12362-3. PubMed ID: 16984155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective hydrosilation of CO2 to a bis(silylacetal) using an anilido bipyridyl-ligated organoscandium catalyst.
    LeBlanc FA; Piers WE; Parvez M
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):789-92. PubMed ID: 24302676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.
    Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ
    J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tandem deoxygenative hydrosilation of carbon dioxide with a cationic scandium hydridoborate and B(C
    Beh DW; Piers WE; Gelfand BS; Lin JB
    Dalton Trans; 2020 Jan; 49(1):95-101. PubMed ID: 31782454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-Catalyzed Reduction of CO2 into Methylene: Formation of C-N, C-O, and C-C Bonds.
    Jin G; Werncke CG; Escudié Y; Sabo-Etienne S; Bontemps S
    J Am Chem Soc; 2015 Aug; 137(30):9563-6. PubMed ID: 26203769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethylene Dimerization and Oligomerization Using Bis(phosphino)boryl Supported Ni Complexes.
    Kong F; Ríos P; Hauck C; Fernández-de-Córdova FJ; Dickie DA; Habgood LG; Rodríguez A; Gunnoe TB
    J Am Chem Soc; 2023 Jan; 145(1):179-193. PubMed ID: 36542802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient nickel catalyst for the reduction of carbon dioxide with a borane.
    Chakraborty S; Zhang J; Krause JA; Guan H
    J Am Chem Soc; 2010 Jul; 132(26):8872-3. PubMed ID: 20540579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Well-defined phosphino-phenolate neutral nickel(II) catalysts for efficient (co)polymerization of norbornene and ethylene.
    Zhang YP; Li WW; Li BX; Mu HL; Li YS
    Dalton Trans; 2015 Apr; 44(16):7382-94. PubMed ID: 25798952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory-guided development of homogeneous catalysts for the reduction of CO
    Cramer HH; Das S; Wodrich MD; Corminboeuf C; Werlé C; Leitner W
    Chem Sci; 2023 Mar; 14(11):2799-2807. PubMed ID: 36937594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.