These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26692466)

  • 1. Early recurrence and ongoing parietal driving during elementary visual processing.
    Plomp G; Hervais-Adelman A; Astolfi L; Michel CM
    Sci Rep; 2015 Dec; 5():18733. PubMed ID: 26692466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow of activation from V1 to frontal cortex in humans. A framework for defining "early" visual processing.
    Foxe JJ; Simpson GV
    Exp Brain Res; 2002 Jan; 142(1):139-50. PubMed ID: 11797091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion direction tuning in human visual cortex.
    Mercier M; Schwartz S; Michel CM; Blanke O
    Eur J Neurosci; 2009 Jan; 29(2):424-34. PubMed ID: 19200244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connectivity and signal intensity in the parieto-occipital cortex predicts top-down attentional effect in visual masking: an fMRI study based on individual differences.
    Tsubomi H; Ikeda T; Hanakawa T; Hirose N; Fukuyama H; Osaka N
    Neuroimage; 2009 Apr; 45(2):587-97. PubMed ID: 19103296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Top-down modulation of visual feature processing: the role of the inferior frontal junction.
    Zanto TP; Rubens MT; Bollinger J; Gazzaley A
    Neuroimage; 2010 Nov; 53(2):736-45. PubMed ID: 20600999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imagery of a moving object: the role of occipital cortex and human MT/V5+.
    Kaas A; Weigelt S; Roebroeck A; Kohler A; Muckli L
    Neuroimage; 2010 Jan; 49(1):794-804. PubMed ID: 19646536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal sequence of attentional modulation in the lateral intraparietal area and middle temporal area during rapid covert shifts of attention.
    Herrington TM; Assad JA
    J Neurosci; 2010 Mar; 30(9):3287-96. PubMed ID: 20203188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I; Macaluso E
    Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Successful declarative memory formation is associated with ongoing activity during encoding in a distributed neocortical network related to working memory: a magnetoencephalography study.
    Takashima A; Jensen O; Oostenveld R; Maris E; van de Coevering M; Fernández G
    Neuroscience; 2006 Apr; 139(1):291-7. PubMed ID: 16325347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top-down flow of visual spatial attention signals from parietal to occipital cortex.
    Lauritzen TZ; D'Esposito M; Heeger DJ; Silver MA
    J Vis; 2009 Dec; 9(13):18.1-14. PubMed ID: 20055551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ventral and dorsal stream interactions during the perception of the Müller-Lyer illusion: evidence derived from fMRI and dynamic causal modeling.
    Plewan T; Weidner R; Eickhoff SB; Fink GR
    J Cogn Neurosci; 2012 Oct; 24(10):2015-29. PubMed ID: 22721374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of attention and arousal on early responses in striate cortex.
    Poghosyan V; Shibata T; Ioannides AA
    Eur J Neurosci; 2005 Jul; 22(1):225-34. PubMed ID: 16029212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention.
    Bressler SL; Tang W; Sylvester CM; Shulman GL; Corbetta M
    J Neurosci; 2008 Oct; 28(40):10056-61. PubMed ID: 18829963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The functional and temporal characteristics of top-down modulation in visual selection.
    Rose M; Schmid C; Winzen A; Sommer T; Büchel C
    Cereb Cortex; 2005 Sep; 15(9):1290-8. PubMed ID: 15616129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Partial Directed Coherence to Study Alpha-Band Effective Brain Networks during a Visuospatial Attention Task.
    Zhao Z; Wang C
    Behav Neurol; 2019; 2019():1410425. PubMed ID: 31565094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient synchrony of distant brain areas and perceptual switching in ambiguous figures.
    Nakatani H; van Leeuwen C
    Biol Cybern; 2006 Jun; 94(6):445-57. PubMed ID: 16532332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of parietofrontal networks underlying visuospatial short-term memory encoding.
    Croizé AC; Ragot R; Garnero L; Ducorps A; Pélégrini-Issac M; Dauchot K; Benali H; Burnod Y
    Neuroimage; 2004 Nov; 23(3):787-99. PubMed ID: 15528080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mismatch negativity with visual-only and audiovisual speech.
    Ponton CW; Bernstein LE; Auer ET
    Brain Topogr; 2009 May; 21(3-4):207-15. PubMed ID: 19404730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waves of awareness for occipital and parietal phosphenes perception.
    Bagattini C; Mazzi C; Savazzi S
    Neuropsychologia; 2015 Apr; 70():114-25. PubMed ID: 25698639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of response speed by anticipatory high-frequency (gamma band) oscillations in the human brain.
    Gonzalez Andino SL; Michel CM; Thut G; Landis T; Grave de Peralta R
    Hum Brain Mapp; 2005 Jan; 24(1):50-8. PubMed ID: 15593272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.