These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26692499)

  • 1. Examination of Factors Potentially Influencing Osteon Size in the Human Rib.
    Dominguez VM; Agnew AM
    Anat Rec (Hoboken); 2016 Mar; 299(3):313-24. PubMed ID: 26692499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary osteon and Haversian canal dimensions as behavioral indicators.
    Pfeiffer S; Crowder C; Harrington L; Brown M
    Am J Phys Anthropol; 2006 Dec; 131(4):460-8. PubMed ID: 16685724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variability in osteon size in recent human populations.
    Pfeiffer S
    Am J Phys Anthropol; 1998 Jun; 106(2):219-27. PubMed ID: 9637185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones.
    Skedros JG; Knight AN; Clark GC; Crowder CM; Dominguez VM; Qiu S; Mulhern DM; Donahue SW; Busse B; Hulsey BI; Zedda M; Sorenson SM
    Am J Phys Anthropol; 2013 Jun; 151(2):230-44. PubMed ID: 23633395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relation of femoral osteon geometry to age, sex, height and weight.
    Britz HM; Thomas CD; Clement JG; Cooper DM
    Bone; 2009 Jul; 45(1):77-83. PubMed ID: 19303955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Influence of Body Size and Bone Mass on Cortical Bone Histomorphometry in Human Ribs.
    Beresheim AC; Pfeiffer SK; Alblas A
    Anat Rec (Hoboken); 2018 Oct; 301(10):1788-1796. PubMed ID: 30353670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reorganization of the femoral cortex due to age-, sex-, and endoprosthetic-related effects emphasized by osteonal dimensions and remodeling.
    Busse B; Hahn M; Schinke T; PĆ¼schel K; Duda GN; Amling M
    J Biomed Mater Res A; 2010 Mar; 92(4):1440-51. PubMed ID: 19360886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in osteon histomorphometrics and their impact on age-at-death estimation in older individuals.
    Goliath JR; Stewart MC; Stout SD
    Forensic Sci Int; 2016 May; 262():282.e1-6. PubMed ID: 27021159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histomorphometric assessment of Haversian canal and osteocyte lacunae in different-sized osteons in human rib.
    Qiu S; Fyhrie DP; Palnitkar S; Rao DS
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Jun; 272(2):520-5. PubMed ID: 12740946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between cross-sectional bone geometry and double zonal osteon frequency and morphology.
    Raguin E; Drapeau MSM
    Am J Phys Anthropol; 2020 Apr; 171(4):598-612. PubMed ID: 31675105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the effect of osteon diameter on the potential relationship of osteocyte lacuna density and osteon wall thickness.
    Skedros JG; Clark GC; Sorenson SM; Taylor KW; Qiu S
    Anat Rec (Hoboken); 2011 Sep; 294(9):1472-85. PubMed ID: 21809466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of intra- and intercostal variation in rib histomorphometry: its impact on evidentiary examination.
    Crowder C; Rosella L
    J Forensic Sci; 2007 Mar; 52(2):271-6. PubMed ID: 17316221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The utility of osteon shape and circularity for differentiating human and non-human Haversian bone.
    Dominguez VM; Crowder CM
    Am J Phys Anthropol; 2012 Sep; 149(1):84-91. PubMed ID: 22700390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-dependent change and intraskeletal variability in secondary osteons of elderly Australians.
    Pedersen LT; Miszkiewicz J; Cheah LC; Willis A; Domett KM
    J Anat; 2024 Jun; 244(6):1078-1092. PubMed ID: 38238907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does 3D orientation account for variation in osteon morphology assessed by 2D histology?
    Hennig C; Thomas CD; Clement JG; Cooper DM
    J Anat; 2015 Oct; 227(4):497-505. PubMed ID: 26249538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogenetic changes to bone microstructure in an archaeologically derived sample of human ribs.
    Beresheim AC; Pfeiffer S; Grynpas M
    J Anat; 2020 Mar; 236(3):448-462. PubMed ID: 31729033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of bone yield (volume of bone formed per unit of cement surface area) on resorption cavity size during osteonal remodeling in human rib: implications for osteoblast function and the pathogenesis of age-related bone loss.
    Qiu S; Rao DS; Palnitkar S; Parfitt AM
    J Bone Miner Res; 2010 Feb; 25(2):423-30. PubMed ID: 19821766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating histomorphometric relationships at the human femoral midshaft in a biomechanical context.
    Miszkiewicz JJ
    J Bone Miner Metab; 2016 Mar; 34(2):179-92. PubMed ID: 25804314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial variation in osteon population density at the human femoral midshaft: histomorphometric adaptations to habitual load environment.
    Gocha TP; Agnew AM
    J Anat; 2016 May; 228(5):733-45. PubMed ID: 26708961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rib Variation at Multiple Locations and Implications for Histological Age Estimation.
    Dominguez VM; Harden AL; Wascher M; Agnew AM
    J Forensic Sci; 2020 Nov; 65(6):2108-2111. PubMed ID: 32749726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.