BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26692898)

  • 1. Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation.
    Sander K; Wilson CM; Rodriguez M; Klingeman DM; Rydzak T; Davison BH; Brown SD
    Biotechnol Biofuels; 2015; 8():211. PubMed ID: 26692898
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Whitham JM; Moon JW; Rodriguez M; Engle NL; Klingeman DM; Rydzak T; Abel MM; Tschaplinski TJ; Guss AM; Brown SD
    Biotechnol Biofuels; 2018; 11():98. PubMed ID: 29632556
    [No Abstract]   [Full Text] [Related]  

  • 3. Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate.
    Li HF; Knutson BL; Nokes SE; Lynn BC; Flythe MD
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1777-84. PubMed ID: 22218768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Roles of Nicotinamide Adenine Dinucleotide Phosphate Reoxidation and Ammonium Assimilation in the Secretion of Amino Acids as Byproducts of Clostridium thermocellum.
    Yayo J; Rydzak T; Kuil T; Karlsson A; Harding DJ; Guss AM; van Maris AJA
    Appl Environ Microbiol; 2023 Jan; 89(1):e0175322. PubMed ID: 36625594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.
    Thompson RA; Layton DS; Guss AM; Olson DG; Lynd LR; Trinh CT
    Metab Eng; 2015 Nov; 32():207-219. PubMed ID: 26497628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum.
    Rydzak T; Garcia D; Stevenson DM; Sladek M; Klingeman DM; Holwerda EK; Amador-Noguez D; Brown SD; Guss AM
    Metab Eng; 2017 May; 41():182-191. PubMed ID: 28400329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress.
    Wilson CM; Yang S; Rodriguez M; Ma Q; Johnson CM; Dice L; Xu Y; Brown SD
    Biotechnol Biofuels; 2013 Sep; 6(1):131. PubMed ID: 24028713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved growth rate in
    Biswas R; Wilson CM; Giannone RJ; Klingeman DM; Rydzak T; Shah MB; Hettich RL; Brown SD; Guss AM
    Biotechnol Biofuels; 2017; 10():6. PubMed ID: 28053665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol tolerance of Clostridium thermocellum: the role of chaotropicity, temperature and pathway thermodynamics on growth and fermentative capacity.
    Kuil T; Yayo J; Pechan J; Küchler J; van Maris AJA
    Microb Cell Fact; 2022 Dec; 21(1):273. PubMed ID: 36567317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.
    Papanek B; Biswas R; Rydzak T; Guss AM
    Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum.
    Biswas R; Zheng T; Olson DG; Lynd LR; Guss AM
    Biotechnol Biofuels; 2015; 8():20. PubMed ID: 25763101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic and proteomic changes from medium supplementation and strain evolution in high-yielding Clostridium thermocellum strains.
    Papanek B; O'Dell KB; Manga P; Giannone RJ; Klingeman DM; Hettich RL; Brown SD; Guss AM
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):1007-1015. PubMed ID: 30187243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributing factors in the improvement of cellulosic H2 production in Clostridium thermocellum/Thermoanaerobacterium co-cultures.
    Wang M; Zhao Q; Li L; Niu K; Li Y; Wang F; Jiang B; Liu K; Jiang Y; Fang X
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8607-20. PubMed ID: 27538932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overflow metabolism and growth cessation in Clostridium thermocellum DSM1313 during high cellulose loading fermentations.
    Thompson RA; Trinh CT
    Biotechnol Bioeng; 2017 Nov; 114(11):2592-2604. PubMed ID: 28671264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression.
    Rydzak T; McQueen PD; Krokhin OV; Spicer V; Ezzati P; Dwivedi RC; Shamshurin D; Levin DB; Wilkins JA; Sparling R
    BMC Microbiol; 2012 Sep; 12():214. PubMed ID: 22994686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory Evolution and Reverse Engineering of
    Yayo J; Kuil T; Olson DG; Lynd LR; Holwerda EK; van Maris AJA
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Analysis of H
    Kuil T; Hon S; Yayo J; Foster C; Ravagnan G; Maranas CD; Lynd LR; Olson DG; van Maris AJA
    Appl Environ Microbiol; 2022 Feb; 88(4):e0185721. PubMed ID: 34936842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rewiring metabolism of Clostridium thermocellum for consolidated bioprocessing of lignocellulosic biomass poplar to produce short-chain esters.
    Seo H; Singh P; Wyman CE; Cai CM; Trinh CT
    Bioresour Technol; 2023 Sep; 384():129263. PubMed ID: 37271458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of
    Zheng T; Cui J; Bae HR; Lynd LR; Olson DG
    Biotechnol Biofuels; 2017; 10():251. PubMed ID: 29213311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405.
    Carere CR; Kalia V; Sparling R; Cicek N; Levin DB
    Indian J Microbiol; 2008 Jun; 48(2):252-66. PubMed ID: 23100718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.