These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 2669325)

  • 21. The influence of capsid protein cleavage on the processing of E2 and E1 glycoproteins of rubella virus.
    McDonald H; Hobman TC; Gillam S
    Virology; 1991 Jul; 183(1):52-60. PubMed ID: 2053296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paramyxovirus tropism dependent on host proteases activating the viral fusion glycoprotein.
    Nagai Y; Inocencio NM; Gotoh B
    Behring Inst Mitt; 1991 Jul; (89):35-45. PubMed ID: 1930102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Signal peptide cleavage regions. Functional limits on length and topological implications.
    Jain RG; Rusch SL; Kendall DA
    J Biol Chem; 1994 Jun; 269(23):16305-10. PubMed ID: 8206936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of Treponema pallidum subspecies pallidum genes encoding signal peptides and membrane-spanning sequences using a novel alkaline phosphatase expression vector.
    Blanco DR; Giladi M; Champion CI; Haake DA; Chikami GK; Miller JN; Lovett MA
    Mol Microbiol; 1991 Oct; 5(10):2405-15. PubMed ID: 1791755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting of the hepatitis B virus precore protein to the endoplasmic reticulum membrane: after signal peptide cleavage translocation can be aborted and the product released into the cytoplasm.
    Garcia PD; Ou JH; Rutter WJ; Walter P
    J Cell Biol; 1988 Apr; 106(4):1093-104. PubMed ID: 3283145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Translocation and cleavage of rubella virus envelope glycoproteins: identification and role of the E2 signal sequence.
    Oker-Blom C; Jarvis DL; Summers MD
    J Gen Virol; 1990 Dec; 71 ( Pt 12)():3047-53. PubMed ID: 2273395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'.
    Donnelly MLL; Luke G; Mehrotra A; Li X; Hughes LE; Gani D; Ryan MD
    J Gen Virol; 2001 May; 82(Pt 5):1013-1025. PubMed ID: 11297676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modifications to the Foot-and-Mouth Disease Virus 2A Peptide: Influence on Polyprotein Processing and Virus Replication.
    Kjær J; Belsham GJ
    J Virol; 2018 Apr; 92(8):. PubMed ID: 29386286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutagenesis of the signal sequence of yellow fever virus prM protein: enhancement of signalase cleavage In vitro is lethal for virus production.
    Lee E; Stocks CE; Amberg SM; Rice CM; Lobigs M
    J Virol; 2000 Jan; 74(1):24-32. PubMed ID: 10590087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SEC11 is required for signal peptide processing and yeast cell growth.
    Böhni PC; Deshaies RJ; Schekman RW
    J Cell Biol; 1988 Apr; 106(4):1035-42. PubMed ID: 3283143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Processing of dengue type 4 and other flavivirus nonstructural proteins.
    Lai CJ; Pethel M; Jan LR; Kawano H; Cahour A; Falgout B
    Arch Virol Suppl; 1994; 9():359-68. PubMed ID: 8032267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting of proteins derived from self-processing polyproteins containing multiple signal sequences.
    de Felipe P; Ryan MD
    Traffic; 2004 Aug; 5(8):616-26. PubMed ID: 15260831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Processing of Japanese encephalitis virus non-structural proteins: NS2B-NS3 complex and heterologous proteases.
    Jan LR; Yang CS; Trent DW; Falgout B; Lai CJ
    J Gen Virol; 1995 Mar; 76 ( Pt 3)():573-80. PubMed ID: 7897348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Post-translational processing of the tobacco etch virus 49-kDa small nuclear inclusion polyprotein: identification of an internal cleavage site and delimitation of VPg and proteinase domains.
    Dougherty WG; Parks TD
    Virology; 1991 Aug; 183(2):449-56. PubMed ID: 1853555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA.
    Yeh SD; Jan FJ; Chiang CH; Doong TJ; Chen MC; Chung PH; Bau HJ
    J Gen Virol; 1992 Oct; 73 ( Pt 10)():2531-41. PubMed ID: 1402799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cleavage site of the poliovirus receptor signal sequence.
    Bibb JA; Bernhardt G; Wimmer E
    J Gen Virol; 1994 Aug; 75 ( Pt 8)():1875-81. PubMed ID: 8046389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Signal peptide fragments of preprolactin and HIV-1 p-gp160 interact with calmodulin.
    Martoglio B; Graf R; Dobberstein B
    EMBO J; 1997 Nov; 16(22):6636-45. PubMed ID: 9362478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The central proline of an internal viral fusion peptide serves two important roles.
    Delos SE; Gilbert JM; White JM
    J Virol; 2000 Feb; 74(4):1686-93. PubMed ID: 10644338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Infectious cell entry mechanism of enveloped viruses].
    Ohnishi S; Yoshimura A
    Uirusu; 1984 Jun; 34(1):11-24. PubMed ID: 6382792
    [No Abstract]   [Full Text] [Related]  

  • 40. Signal peptidase I processed secretory signal sequences: Selection for and against specific amino acids at the second position of mature protein.
    Zalucki YM; Jennings MP
    Biochem Biophys Res Commun; 2017 Feb; 483(3):972-977. PubMed ID: 28088521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.