These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 26693678)
1. Dual Role of Mesenchymal Stem Cells Allows for Microvascularized Bone Tissue-Like Environments in PEG Hydrogels. Blache U; Metzger S; Vallmajo-Martin Q; Martin I; Djonov V; Ehrbar M Adv Healthc Mater; 2016 Feb; 5(4):489-98. PubMed ID: 26693678 [TBL] [Abstract][Full Text] [Related]
2. Effects of Fiber Alignment and Coculture with Endothelial Cells on Osteogenic Differentiation of Mesenchymal Stromal Cells. Yao T; Chen H; Baker MB; Moroni L Tissue Eng Part C Methods; 2020 Jan; 26(1):11-22. PubMed ID: 31774033 [TBL] [Abstract][Full Text] [Related]
3. Efficiency of coculture with angiogenic cells or physiological BMP-2 administration on improving osteogenic differentiation and bone formation of MSCs. Zhang Y; Yang W; Devit A; van den Beucken JJJP J Biomed Mater Res A; 2019 Mar; 107(3):643-653. PubMed ID: 30458064 [TBL] [Abstract][Full Text] [Related]
4. Simple Establishment of a Vascularized Osteogenic Bone Marrow Niche Using Pre-Cast Poly(ethylene Glycol) (PEG) Hydrogels in an Imaging Microplate. Krattiger LA; Mitsi M; Simona BR; Ehrbar M J Vis Exp; 2023 May; (195):. PubMed ID: 37318255 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of Biomimetic Bone Tissue Using Mesenchymal Stem Cell-Derived Three-Dimensional Constructs Incorporating Endothelial Cells. Sasaki J; Hashimoto M; Yamaguchi S; Itoh Y; Yoshimoto I; Matsumoto T; Imazato S PLoS One; 2015; 10(6):e0129266. PubMed ID: 26047122 [TBL] [Abstract][Full Text] [Related]
6. Ectopic vascularized bone formation by human umbilical cord-derived mesenchymal stromal cells expressing bone morphogenetic factor-2 and endothelial cells. Yang SJ; Son JK; Hong SJ; Lee NE; Shin DY; Park SH; An SB; Sung YC; Park JB; Yang HM; Kim SJ Biochem Biophys Res Commun; 2018 Sep; 504(1):302-308. PubMed ID: 30190122 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of viable and functional pre-vascularized modular bone tissues by coculturing MSCs and HUVECs on microcarriers in spinner flasks. Zhang S; Zhou M; Ye Z; Zhou Y; Tan WS Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28544815 [TBL] [Abstract][Full Text] [Related]
8. Adipose tissue-derived mesenchymal stem cells as monocultures or cocultures with human umbilical vein endothelial cells: performance in vitro and in rat cranial defects. Ma J; Both SK; Ji W; Yang F; Prins HJ; Helder MN; Pan J; Cui FZ; Jansen JA; van den Beucken JJ J Biomed Mater Res A; 2014 Apr; 102(4):1026-36. PubMed ID: 23640784 [TBL] [Abstract][Full Text] [Related]
9. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
11. Heterobifunctional poly(ethylene glycol)-tethered bone morphogenetic protein-2-stimulated bone marrow mesenchymal stromal cell differentiation and osteogenesis. Liu HW; Chen CH; Tsai CL; Lin IH; Hsiue GH Tissue Eng; 2007 May; 13(5):1113-24. PubMed ID: 17355208 [TBL] [Abstract][Full Text] [Related]
12. Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Shekaran A; García JR; Clark AY; Kavanaugh TE; Lin AS; Guldberg RE; García AJ Biomaterials; 2014 Jul; 35(21):5453-61. PubMed ID: 24726536 [TBL] [Abstract][Full Text] [Related]
13. An in vitro bone tissue regeneration strategy combining chondrogenic and vascular priming enhances the mineralization potential of mesenchymal stem cells in vitro while also allowing for vessel formation. Freeman FE; Haugh MG; McNamara LM Tissue Eng Part A; 2015 Apr; 21(7-8):1320-32. PubMed ID: 25588588 [TBL] [Abstract][Full Text] [Related]
14. Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells. Li H; Xue K; Kong N; Liu K; Chang J Biomaterials; 2014 Apr; 35(12):3803-18. PubMed ID: 24486216 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration. Reichert JC; Heymer A; Berner A; Eulert J; Nöth U Biomed Mater; 2009 Dec; 4(6):065001. PubMed ID: 19837997 [TBL] [Abstract][Full Text] [Related]
16. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity. Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841 [TBL] [Abstract][Full Text] [Related]
17. Modular poly(ethylene glycol) matrices for the controlled 3D-localized osteogenic differentiation of mesenchymal stem cells. Metzger S; Lienemann PS; Ghayor C; Weber W; Martin I; Weber FE; Ehrbar M Adv Healthc Mater; 2015 Mar; 4(4):550-8. PubMed ID: 25358649 [TBL] [Abstract][Full Text] [Related]
18. Engineering 3D cell instructive microenvironments by rational assembly of artificial extracellular matrices and cell patterning. Sala A; Hänseler P; Ranga A; Lutolf MP; Vörös J; Ehrbar M; Weber FE Integr Biol (Camb); 2011 Nov; 3(11):1102-11. PubMed ID: 21986771 [TBL] [Abstract][Full Text] [Related]
19. Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing. Hoffman MD; Benoit DS Biomaterials; 2015 Jun; 52():426-40. PubMed ID: 25818449 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Raic A; Rödling L; Kalbacher H; Lee-Thedieck C Biomaterials; 2014 Jan; 35(3):929-40. PubMed ID: 24176196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]