BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26693853)

  • 21. Biologic augmentation of polymer scaffolds for bone repair.
    Guldberg RE; Oest ME; Dupont K; Peister A; Deutsch E; Kolambkar Y; Mooney D
    J Musculoskelet Neuronal Interact; 2007; 7(4):333-4. PubMed ID: 18094499
    [No Abstract]   [Full Text] [Related]  

  • 22. Bioactive glass-based scaffolds for bone tissue engineering.
    Will J; Gerhardt LC; Boccaccini AR
    Adv Biochem Eng Biotechnol; 2012; 126():195-226. PubMed ID: 22085919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biofabricated constructs as tissue models: a short review.
    Costa PF
    J Mater Sci Mater Med; 2015 Apr; 26(4):156. PubMed ID: 25779513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Current Status and Challenges of Three-Dimensional Modeling and Printing of Tissues and Organs.
    Husain SR; Ohya Y; Puri RK
    Tissue Eng Part A; 2017 Jun; 23(11-12):471-473. PubMed ID: 28437213
    [No Abstract]   [Full Text] [Related]  

  • 25. Novel propylene oxide-treated bovine pericardium as soft tissue repair material and potential scaffold for tissue engineering.
    Oray BN; Kelly S; Konobeck T; Lambert A; Mooradian DL
    Surg Technol Int; 2009 Apr; 18():47-54. PubMed ID: 19579189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Electrospinning technology in tissue engineering scaffolds].
    Li H; Liu Y; He X; Ding Y; Yan H; Xie P; Yang W
    Sheng Wu Gong Cheng Xue Bao; 2012 Jan; 28(1):15-25. PubMed ID: 22667105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiphoton crosslinking for biocompatible 3D printing of type I collagen.
    Bell A; Kofron M; Nistor V
    Biofabrication; 2015 Sep; 7(3):035007. PubMed ID: 26335389
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system.
    Lee SJ; Heo DN; Park JS; Kwon SK; Lee JH; Lee JH; Kim WD; Kwon IK; Park SA
    Phys Chem Chem Phys; 2015 Feb; 17(5):2996-9. PubMed ID: 25557615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of cell behavior by aligned micro/nanofibrous biomaterial scaffolds fabricated by spinneret-based tunable engineered parameters (STEP) technique.
    Nain AS; Phillippi JA; Sitti M; Mackrell J; Campbell PG; Amon C
    Small; 2008 Aug; 4(8):1153-9. PubMed ID: 18651720
    [No Abstract]   [Full Text] [Related]  

  • 30. Tendon tissue engineering using scaffold enhancing strategies.
    Liu Y; Ramanath HS; Wang DA
    Trends Biotechnol; 2008 Apr; 26(4):201-9. PubMed ID: 18295915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Research progress in electrospinning technique for biomedical materials].
    Cai Z; Yang G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1389-92. PubMed ID: 21375001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages.
    Duarte Campos DF; Blaeser A; Korsten A; Neuss S; Jäkel J; Vogt M; Fischer H
    Tissue Eng Part A; 2015 Feb; 21(3-4):740-56. PubMed ID: 25236338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chitin, chitosan and derivatives for wound healing and tissue engineering.
    Francesko A; Tzanov T
    Adv Biochem Eng Biotechnol; 2011; 125():1-27. PubMed ID: 21072697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D printing of new biobased unsaturated polyesters by microstereo-thermallithography.
    Gonçalves FA; Costa CS; Fabela IG; Farinha D; Faneca H; Simões PN; Serra AC; Bártolo PJ; Coelho JF
    Biofabrication; 2014 Sep; 6(3):035024. PubMed ID: 25190707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Porous ovalbumin scaffolds with tunable properties: a resource-efficient biodegradable material for tissue engineering applications.
    Luo B; Choong C
    J Biomater Appl; 2015 Jan; 29(6):903-11. PubMed ID: 25158688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of computationally designed scaffolds by low temperature 3D printing.
    Castilho M; Dias M; Gbureck U; Groll J; Fernandes P; Pires I; Gouveia B; Rodrigues J; Vorndran E
    Biofabrication; 2013 Sep; 5(3):035012. PubMed ID: 23887064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
    Obregon F; Vaquette C; Ivanovski S; Hutmacher DW; Bertassoni LE
    J Dent Res; 2015 Sep; 94(9 Suppl):143S-52S. PubMed ID: 26124216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of thermal degradation with extrusion-based dispensing modules for 3D bioprinting technology.
    Lee H; Yoo JJ; Kang HW; Cho DW
    Biofabrication; 2016 Feb; 8(1):015011. PubMed ID: 26844711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography.
    Mačiulaitis J; Deveikytė M; Rekštytė S; Bratchikov M; Darinskas A; Šimbelytė A; Daunoras G; Laurinavičienė A; Laurinavičius A; Gudas R; Malinauskas M; Mačiulaitis R
    Biofabrication; 2015 Mar; 7(1):015015. PubMed ID: 25797444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioengineered scaffolds for spinal cord repair.
    Wang M; Zhai P; Chen X; Schreyer DJ; Sun X; Cui F
    Tissue Eng Part B Rev; 2011 Jun; 17(3):177-94. PubMed ID: 21338266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.