These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26693853)

  • 41. Thermoresponsive macroporous scaffolds prepared by emulsion templating.
    Zhou S; Bismarck A; Steinke JH
    Macromol Rapid Commun; 2012 Nov; 33(21):1833-9. PubMed ID: 22927192
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Laser-assisted printing of alginate long tubes and annular constructs.
    Yan J; Huang Y; Chrisey DB
    Biofabrication; 2013 Mar; 5(1):015002. PubMed ID: 23172571
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell- and tissue-engineered organ replacements.
    Birchall MA
    Br J Surg; 2009 Jun; 96(6):565-6. PubMed ID: 19434712
    [No Abstract]   [Full Text] [Related]  

  • 44. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering.
    Luo Y; Wu C; Lode A; Gelinsky M
    Biofabrication; 2013 Mar; 5(1):015005. PubMed ID: 23228963
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3-D printing makes its way to veterinary medicine.
    Larkin M
    J Am Vet Med Assoc; 2014 Jul; 245(1):24-5. PubMed ID: 25174071
    [No Abstract]   [Full Text] [Related]  

  • 46. Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration.
    Williams SF; Rizk S; Martin DP
    Biomed Tech (Berl); 2013 Oct; 58(5):439-52. PubMed ID: 23979121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthetic extracellular matrices for tissue engineering.
    Leach JK; Mooney DJ
    Pharm Res; 2008 May; 25(5):1209-11. PubMed ID: 18266090
    [No Abstract]   [Full Text] [Related]  

  • 48. Chitosan membranes for tissue engineering: comparison of different crosslinkers.
    Ruini F; Tonda-Turo C; Chiono V; Ciardelli G
    Biomed Mater; 2015 Nov; 10(6):065002. PubMed ID: 26526195
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding.
    Lee KW; Wang S; Lu L; Jabbari E; Currier BL; Yaszemski MJ
    Tissue Eng; 2006 Oct; 12(10):2801-11. PubMed ID: 17518649
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-dimensional bio-printing.
    Gu Q; Hao J; Lu Y; Wang L; Wallace GG; Zhou Q
    Sci China Life Sci; 2015 May; 58(5):411-9. PubMed ID: 25921944
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Current progress of fabricating tissue engineering scaffold using rapid prototyping techniques].
    Li X; Wang C
    Sheng Wu Gong Cheng Xue Bao; 2008 Aug; 24(8):1321-6. PubMed ID: 18998530
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Congratulations: 100
    Buehler MJ
    J Mech Behav Biomed Mater; 2019 Dec; 100():103450. PubMed ID: 31577990
    [No Abstract]   [Full Text] [Related]  

  • 53. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs.
    Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S
    Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.
    Chen G; Dong C; Yang L; Lv Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template.
    Wang XY; Jin ZH; Gan BW; Lv SW; Xie M; Huang WH
    Lab Chip; 2014 Aug; 14(15):2709-16. PubMed ID: 24887141
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scaffold technologies for controlling cell behavior in tissue engineering.
    Lee SJ; Atala A
    Biomed Mater; 2013 Feb; 8(1):010201. PubMed ID: 23355718
    [No Abstract]   [Full Text] [Related]  

  • 57. Biomaterial scaffolds in pediatric tissue engineering.
    Patel M; Fisher JP
    Pediatr Res; 2008 May; 63(5):497-501. PubMed ID: 18427294
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent strategies to develop polysaccharide-based nanomaterials for biomedical applications.
    Wen Y; Oh JK
    Macromol Rapid Commun; 2014 Nov; 35(21):1819-32. PubMed ID: 25283788
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation.
    Kasoju N; Kubies D; Sedlačík T; Janoušková O; Koubková J; Kumorek MM; Rypáček F
    Biomed Mater; 2016 Jan; 11(1):015002. PubMed ID: 26752658
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite.
    Catros S; Fricain JC; Guillotin B; Pippenger B; Bareille R; Remy M; Lebraud E; Desbat B; Amédée J; Guillemot F
    Biofabrication; 2011 Jun; 3(2):025001. PubMed ID: 21527813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.