These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26693883)

  • 1. Finite elements/Taguchi method based procedure for the identification of the geometrical parameters significantly affecting the biomechanical behavior of a lumbar disc.
    Cappetti N; Naddeo A; Naddeo F; Solitro GF
    Comput Methods Biomech Biomed Engin; 2016 Sep; 19(12):1278-85. PubMed ID: 26693883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.
    Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK
    J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion.
    Ueno K; Liu YK
    J Biomech Eng; 1987 Aug; 109(3):200-9. PubMed ID: 3657107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systems identification for material properties of the intervertebral joint.
    Lin HS; Liu YK; Ray G; Nikravesh P
    J Biomech; 1978; 11(1-2):1-14. PubMed ID: 659451
    [No Abstract]   [Full Text] [Related]  

  • 5. Statistical factorial analysis approach for parameter calibration on material nonlinearity of intervertebral disc finite element model.
    Masni-Azian ; Tanaka M
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1066-1076. PubMed ID: 28532164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Construction and analysis of a finite element model of human L4-5 lumbar segment].
    Yan W; Zhao G; Fang X; Guo H; Ma T; Tu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Jun; 31(3):612-8. PubMed ID: 25219245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of material and morphological parameters on the mechanical response of the lumbar spine - A finite element sensitivity study.
    Zander T; Dreischarf M; Timm AK; Baumann WW; Schmidt H
    J Biomech; 2017 Feb; 53():185-190. PubMed ID: 28010945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient probabilistic finite element analysis of a lumbar motion segment.
    Coombs DJ; Rullkoetter PJ; Laz PJ
    J Biomech; 2017 Aug; 61():65-74. PubMed ID: 28733037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method to geometrically personalize a detailed finite-element model of the spine.
    Lalonde NM; Petit Y; Aubin CE; Wagnac E; Arnoux PJ
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):2014-21. PubMed ID: 23434601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a vertebral endplate 3-D reconstruction technique.
    Huynh TN; Dansereau J; Maurais G
    IEEE Trans Med Imaging; 1997 Oct; 16(5):689-96. PubMed ID: 9368125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model-Method and Performance in Flexed Postures.
    Meng X; Bruno AG; Cheng B; Wang W; Bouxsein ML; Anderson DE
    J Biomech Eng; 2015 Oct; 137(10):101008. PubMed ID: 26299207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.
    Guo LX; Li R; Zhang M
    Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs.
    Galbusera F; Schmidt H; Noailly J; Malandrino A; Lacroix D; Wilke HJ; Shirazi-Adl A
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1234-41. PubMed ID: 21783132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in lumbar spine load due to posture and upper limb external load.
    Kamińska J; Roman-Liu D; Zagrajek T; Borkowski P
    Int J Occup Saf Ergon; 2010; 16(4):421-30. PubMed ID: 21144261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal biomechanics modeling and finite element analysis of surgical instrument interaction.
    Guan W; Sun Y; Qi X; Hu Y; Duan C; Tao H; Yang X
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):151-159. PubMed ID: 30689442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties.
    Casaroli G; Galbusera F; Jonas R; Schlager B; Wilke HJ; Villa T
    PLoS One; 2017; 12(5):e0177088. PubMed ID: 28472100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can variations in intervertebral disc height affect the mechanical function of the disc?
    Lu YM; Hutton WC; Gharpuray VM
    Spine (Phila Pa 1976); 1996 Oct; 21(19):2208-16; discussion 2217. PubMed ID: 8902964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades?
    Schmidt H; Galbusera F; Rohlmann A; Shirazi-Adl A
    J Biomech; 2013 Sep; 46(14):2342-55. PubMed ID: 23962527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model.
    Goto K; Tajima N; Chosa E; Totoribe K; Kuroki H; Arizumi Y; Arai T
    J Orthop Sci; 2002; 7(2):243-6. PubMed ID: 11956986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model.
    Xie F; Zhou H; Zhao W; Huang L
    Technol Health Care; 2017 Jul; 25(S1):177-187. PubMed ID: 28582905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.