These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26693971)

  • 1. Charge Distribution in Nanostructured TiO2 Photoanode Determined by Quantitative Analysis of the Band Edge Unpinning.
    Mandal D; Hamann TW
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):419-24. PubMed ID: 26693971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band energies of nanoparticle semiconductor electrodes determined by spectroelectrochemical measurements of free electrons.
    Mandal D; Hamann TW
    Phys Chem Chem Phys; 2015 May; 17(17):11156-60. PubMed ID: 25864683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between Energy and Spatial Distribution of Intragap Trap States in the TiO2 Photoanode of Dye-Sensitized Solar Cells.
    Wang Y; Wu D; Fu LM; Ai XC; Xu D; Zhang JP
    Chemphyschem; 2015 Jul; 16(10):2253-9. PubMed ID: 25916413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin Silicon Oxide Film-Induced Enhancement of Charge Separation and Transport of Nanostructured Titanium(IV) Oxide Photoelectrode.
    Akita A; Kobayashi H; Tada H
    Chemphyschem; 2019 Aug; 20(16):2054-2059. PubMed ID: 31260153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to [Co(bpy)3]3+: insights gained from impedance spectroscopy.
    Liu Y; Jennings JR; Zakeeruddin SM; Grätzel M; Wang Q
    J Am Chem Soc; 2013 Mar; 135(10):3939-52. PubMed ID: 23425317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO2 films by voltabsorptometry.
    Renault C; Nicole L; Sanchez C; Costentin C; Balland V; Limoges B
    Phys Chem Chem Phys; 2015 Apr; 17(16):10592-607. PubMed ID: 25804293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge Transport Limitations in Self-Assembled TiO2 Photoanodes for Dye-Sensitized Solar Cells.
    Docampo P; Guldin S; Steiner U; Snaith HJ
    J Phys Chem Lett; 2013 Mar; 4(5):698-703. PubMed ID: 26281921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin of higher open-circuit voltage in Zn-doped TiO2 nanoparticle-based dye-sensitized solar cells.
    Zhu F; Zhang P; Wu X; Fu L; Zhang J; Xu D
    Chemphyschem; 2012 Nov; 13(16):3731-7. PubMed ID: 22899421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2.
    Duncan WR; Craig CF; Prezhdo OV
    J Am Chem Soc; 2007 Jul; 129(27):8528-43. PubMed ID: 17579405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of pH-dependent back-electron-transfer dynamics in alizarin/TiO2 adsorbates: importance of trap states.
    Matylitsky VV; Lenz MO; Wachtveitl J
    J Phys Chem B; 2006 Apr; 110(16):8372-9. PubMed ID: 16623522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elementary photoelectronic processes at a porphyrin dye/single-walled TiO2 nanotube hetero-interface in dye-sensitized solar cells: a first-principles study.
    Dong C; Li X; Zhao W; Jin P; Fan X; Qi J
    Chemistry; 2013 Jul; 19(30):10046-56. PubMed ID: 23765451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced charge carrier dynamics of Zn-porphyrin-TiO2 electrodes: the key role of charge recombination for solar cell performance.
    Imahori H; Kang S; Hayashi H; Haruta M; Kurata H; Isoda S; Canton SE; Infahsaeng Y; Kathiravan A; Pascher T; Chábera P; Yartsev AP; Sundström V
    J Phys Chem A; 2011 Apr; 115(16):3679-90. PubMed ID: 20961148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin SnO2 scaffolds for TiO2-based heterojunction photoanodes in dye-sensitized solar cells: oriented charge transport and improved light scattering.
    Yang S; Hou Y; Xing J; Zhang B; Tian F; Yang XH; Yang HG
    Chemistry; 2013 Jul; 19(28):9366-70. PubMed ID: 23733334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rethinking band bending at the P3HT-TiO(2) interface.
    Haring AJ; Ahrenholtz SR; Morris AJ
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4394-401. PubMed ID: 24571734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells.
    Boschloo G; Häggman L; Hagfeldt A
    J Phys Chem B; 2006 Jul; 110(26):13144-50. PubMed ID: 16805626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal oxide semiconductors for dye- and quantum-dot-sensitized solar cells.
    Concina I; Vomiero A
    Small; 2015 Apr; 11(15):1744-74. PubMed ID: 25523717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen doped TiO2-Cu(x)O core-shell mesoporous spherical hybrids for high-performance dye-sensitized solar cells.
    Guo E; Yin L
    Phys Chem Chem Phys; 2015 Jan; 17(1):563-74. PubMed ID: 25407021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.