BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26694485)

  • 1. 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process.
    Djekidel MN; Liang Z; Wang Q; Hu Z; Li G; Chen Y; Zhang MQ
    Genome Biol; 2015 Dec; 16():288. PubMed ID: 26694485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) sequencing technology and application.
    Li G; Cai L; Chang H; Hong P; Zhou Q; Kulakova EV; Kolchanov NA; Ruan Y
    BMC Genomics; 2014; 15 Suppl 12(Suppl 12):S11. PubMed ID: 25563301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing.
    Li G; Fullwood MJ; Xu H; Mulawadi FH; Velkov S; Vega V; Ariyaratne PN; Mohamed YB; Ooi HS; Tennakoon C; Wei CL; Ruan Y; Sung WK
    Genome Biol; 2010; 11(2):R22. PubMed ID: 20181287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MICC: an R package for identifying chromatin interactions from ChIA-PET data.
    He C; Zhang MQ; Wang X
    Bioinformatics; 2015 Dec; 31(23):3832-4. PubMed ID: 26231426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling co-occupancy of transcription factors using chromatin features.
    Liu L; Zhao W; Zhou X
    Nucleic Acids Res; 2016 Mar; 44(5):e49. PubMed ID: 26590261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis.
    Li G; Chen Y; Snyder MP; Zhang MQ
    Nucleic Acids Res; 2017 Jan; 45(1):e4. PubMed ID: 27625391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ChIAPoP: a new tool for ChIA-PET data analysis.
    Huang W; Medvedovic M; Zhang J; Niu L
    Nucleic Acids Res; 2019 Apr; 47(7):e37. PubMed ID: 30753588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin Interaction Analysis with Updated ChIA-PET Tool (V3).
    Li G; Sun T; Chang H; Cai L; Hong P; Zhou Q
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31336684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian mixture model for chromatin interaction data.
    Niu L; Lin S
    Stat Appl Genet Mol Biol; 2015 Feb; 14(1):53-64. PubMed ID: 25485614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ChIAMM: A Mixture Model for Statistical Analysis of Long-Range Chromatin Interactions From ChIA-PET Experiments.
    Arega Y; Jiang H; Wang S; Zhang J; Niu X; Li G
    Front Genet; 2020; 11():616160. PubMed ID: 33381154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculating transcription factor binding maps for chromatin.
    Teif VB; Rippe K
    Brief Bioinform; 2012 Mar; 13(2):187-201. PubMed ID: 21737419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.
    Liu XS; Brutlag DL; Liu JS
    Nat Biotechnol; 2002 Aug; 20(8):835-9. PubMed ID: 12101404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of chromatin and transcriptional co-regulators in mediating p63-genome interactions in keratinocytes.
    Sethi I; Sinha S; Buck MJ
    BMC Genomics; 2014 Nov; 15(1):1042. PubMed ID: 25433490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CTCF-mediated chromatin loops enclose inducible gene regulatory domains.
    Oti M; Falck J; Huynen MA; Zhou H
    BMC Genomics; 2016 Mar; 17():252. PubMed ID: 27004515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution AFM studies of human Swi-Snf and its interactions with MMTV DNA and chromatin.
    Wang H; Bash R; Lindsay SM; Lohr D
    Biophys J; 2005 Nov; 89(5):3386-98. PubMed ID: 16100261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching.
    Mueller F; Wach P; McNally JG
    Biophys J; 2008 Apr; 94(8):3323-39. PubMed ID: 18199661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-range interactions between three transcriptional enhancers, active Vkappa gene promoters, and a 3' boundary sequence spanning 46 kilobases.
    Liu Z; Garrard WT
    Mol Cell Biol; 2005 Apr; 25(8):3220-31. PubMed ID: 15798207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterocomplex formation by Arp4 and β-actin is involved in the integrity of the Brg1 chromatin remodeling complex.
    Nishimoto N; Watanabe M; Watanabe S; Sugimoto N; Yugawa T; Ikura T; Koiwai O; Kiyono T; Fujita M
    J Cell Sci; 2012 Aug; 125(Pt 16):3870-82. PubMed ID: 22573825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid, solid-phase based automated analysis of chromatin structure and transcription factor occupancy in living eukaryotic cells.
    Ingram R; Tagoh H; Riggs AD; Bonifer C
    Nucleic Acids Res; 2005 Jan; 33(1):e1. PubMed ID: 15644555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of SRG3, a core component of mouse SWI/SNF chromatin-remodeling complex, is regulated by cooperative interactions between Sp1/Sp3 and Ets transcription factors.
    Ahn J; Ko M; Lee K; Oh J; Jeon SH; Seong RH
    Biochem Biophys Res Commun; 2005 Dec; 338(3):1435-46. PubMed ID: 16288722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.