These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26694485)

  • 41. Mini-review: Gene regulatory network benefits from three-dimensional chromatin conformation and structural biology.
    Zhu X; Huang Q; Luo J; Kong D; Zhang Y
    Comput Struct Biotechnol J; 2023; 21():1728-1737. PubMed ID: 36890880
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MINE is a method for detecting spatial density of regulatory chromatin interactions based on a multi-modal network.
    Gong H; Li M; Ji M; Zhang X; Yuan Z; Zhang S; Yang Y; Li C; Chen Y
    Cell Rep Methods; 2023 Jan; 3(1):100386. PubMed ID: 36814847
    [TBL] [Abstract][Full Text] [Related]  

  • 43. When 3D genome technology meets viral infection, including SARS-CoV-2.
    Liang W; Wang S; Wang H; Li X; Meng Q; Zhao Y; Zheng C
    J Med Virol; 2022 Dec; 94(12):5627-5639. PubMed ID: 35916043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Simple Evolutionary Model of Genetic Robustness After Gene Duplication.
    Gu X
    J Mol Evol; 2022 Oct; 90(5):352-361. PubMed ID: 35913597
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interrogating cell type-specific cooperation of transcriptional regulators in 3D chromatin.
    Yi X; Zheng Z; Xu H; Zhou Y; Huang D; Wang J; Feng X; Zhao K; Fan X; Zhang S; Dong X; Wang Z; Shen Y; Cheng H; Shi L; Li MJ
    iScience; 2021 Dec; 24(12):103468. PubMed ID: 34888502
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A computational framework for identifying the transcription factors involved in enhancer-promoter loop formation.
    Liu L; Zhang LR; Dao FY; Yang YC; Lin H
    Mol Ther Nucleic Acids; 2021 Mar; 23():347-354. PubMed ID: 33425492
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hierarchical cooperation of transcription factors from integration analysis of DNA sequences, ChIP-Seq and ChIA-PET data.
    Wang R; Wang Y; Zhang X; Zhang Y; Du X; Fang Y; Li G
    BMC Genomics; 2019 May; 20(Suppl 3):296. PubMed ID: 32039697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TAD-free analysis of architectural proteins and insulators.
    Mourad R; Cuvier O
    Nucleic Acids Res; 2018 Mar; 46(5):e27. PubMed ID: 29272504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions.
    Liang Z; Li G; Wang Z; Djekidel MN; Li Y; Qian MP; Zhang MQ; Chen Y
    Nat Commun; 2017 Nov; 8(1):1622. PubMed ID: 29158486
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integrative Analysis of Transcription Factor Combinatorial Interactions Using a Bayesian Tensor Factorization Approach.
    Ye Y; Gao L; Zhang S
    Front Genet; 2017; 8():140. PubMed ID: 29033978
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling gene regulation from paired expression and chromatin accessibility data.
    Duren Z; Chen X; Jiang R; Wang Y; Wong WH
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):E4914-E4923. PubMed ID: 28576882
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Uncovering direct and indirect molecular determinants of chromatin loops using a computational integrative approach.
    Mourad R; Li L; Cuvier O
    PLoS Comput Biol; 2017 May; 13(5):e1005538. PubMed ID: 28542178
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis.
    Li G; Chen Y; Snyder MP; Zhang MQ
    Nucleic Acids Res; 2017 Jan; 45(1):e4. PubMed ID: 27625391
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process.
    Djekidel MN; Liang Z; Wang Q; Hu Z; Li G; Chen Y; Zhang MQ
    Genome Biol; 2015 Dec; 16():288. PubMed ID: 26694485
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) sequencing technology and application.
    Li G; Cai L; Chang H; Hong P; Zhou Q; Kulakova EV; Kolchanov NA; Ruan Y
    BMC Genomics; 2014; 15 Suppl 12(Suppl 12):S11. PubMed ID: 25563301
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing.
    Li G; Fullwood MJ; Xu H; Mulawadi FH; Velkov S; Vega V; Ariyaratne PN; Mohamed YB; Ooi HS; Tennakoon C; Wei CL; Ruan Y; Sung WK
    Genome Biol; 2010; 11(2):R22. PubMed ID: 20181287
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MICC: an R package for identifying chromatin interactions from ChIA-PET data.
    He C; Zhang MQ; Wang X
    Bioinformatics; 2015 Dec; 31(23):3832-4. PubMed ID: 26231426
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Co-repressor complexes and remodelling chromatin for repression.
    Wolffe AP; Urnov FD; Guschin D
    Biochem Soc Trans; 2000; 28(4):379-86. PubMed ID: 10961924
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Finding targets of transcriptional regulators--chromatin immunoprecipitation assay (ChIP)].
    Kus-Liśkiewicz M; Widłak W
    Postepy Biochem; 2011; 57(4):418-24. PubMed ID: 22568174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.