BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26694844)

  • 1. Differences in Sustained Attention Capacity as a Function of Aerobic Fitness.
    Luque-Casado A; Perakakis P; Hillman CH; Kao SC; Llorens F; Guerra P; Sanabria D
    Med Sci Sports Exerc; 2016 May; 48(5):887-95. PubMed ID: 26694844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels.
    Tsai CL; Chen FC; Pan CY; Wang CH; Huang TH; Chen TC
    Psychoneuroendocrinology; 2014 Mar; 41():121-31. PubMed ID: 24495613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children.
    Hillman CH; Buck SM; Themanson JR; Pontifex MB; Castelli DM
    Dev Psychol; 2009 Jan; 45(1):114-29. PubMed ID: 19209995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient autonomic responses during sustained attention in high and low fit young adults.
    Luque-Casado A; Perakakis P; Ciria LF; Sanabria D
    Sci Rep; 2016 Jun; 6():27556. PubMed ID: 27271980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiorespiratory fitness is associated with sustained neurocognitive function during a prolonged inhibitory control task in young adults: An ERP study.
    Wu CH; Nien JT; Lin CY; Li RH; Chu CH; Kao SC; Chang YK
    Psychophysiology; 2022 Nov; 59(11):e14086. PubMed ID: 35506488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Physical Fitness in the Neurocognitive Performance of Task Switching in Older Persons with Mild Cognitive Impairment.
    Tsai CL; Pai MC; Ukropec J; Ukropcová B
    J Alzheimers Dis; 2016 Apr; 53(1):143-59. PubMed ID: 27128369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relation of aerobic fitness to neuroelectric indices of cognitive and motor task preparation.
    Kamijo K; O'Leary KC; Pontifex MB; Themanson JR; Hillman CH
    Psychophysiology; 2010 Sep; 47(5):814-21. PubMed ID: 20345598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From cognitive motor preparation to visual processing: The benefits of childhood fitness to brain health.
    Berchicci M; Pontifex MB; Drollette ES; Pesce C; Hillman CH; Di Russo F
    Neuroscience; 2015 Jul; 298():211-9. PubMed ID: 25907444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic fitness and neurocognitive function in healthy preadolescent children.
    Hillman CH; Castelli DM; Buck SM
    Med Sci Sports Exerc; 2005 Nov; 37(11):1967-74. PubMed ID: 16286868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children.
    Pontifex MB; Raine LB; Johnson CR; Chaddock L; Voss MW; Cohen NJ; Kramer AF; Hillman CH
    J Cogn Neurosci; 2011 Jun; 23(6):1332-45. PubMed ID: 20521857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic fitness relates to differential attentional but not language-related cognitive processes.
    Chandler MC; McGowan AL; Payne BR; Hampton Wray A; Pontifex MB
    Brain Lang; 2019 Nov; 198():104681. PubMed ID: 31514088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic fitness and the attentional blink in preadolescent children.
    Wu CT; Hillman CH
    Neuropsychology; 2013 Nov; 27(6):642-53. PubMed ID: 24059445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fitness, physical activity, sedentary time, inhibitory control, and neuroelectric activity in children with overweight or obesity: The ActiveBrains project.
    Mora-Gonzalez J; Esteban-Cornejo I; Solis-Urra P; Migueles JH; Cadenas-Sanchez C; Molina-Garcia P; Rodriguez-Ayllon M; Hillman CH; Catena A; Pontifex MB; Ortega FB
    Psychophysiology; 2020 Jun; 57(6):e13579. PubMed ID: 32249933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between sustained attention and aerobic fitness in a group of young adults.
    Ciria LF; Perakakis P; Luque-Casado A; Morato C; Sanabria D
    PeerJ; 2017; 5():e3831. PubMed ID: 28975054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beneficial effects of acute high-intensity exercise on electrophysiological indices of attention processes in young adult men.
    Du Rietz E; Barker AR; Michelini G; Rommel AS; Vainieri I; Asherson P; Kuntsi J
    Behav Brain Res; 2019 Feb; 359():474-484. PubMed ID: 30465815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between aerobic fitness and neural oscillations during visuo-spatial attention in young adults.
    Wang CH; Liang WK; Tseng P; Muggleton NG; Juan CH; Tsai CL
    Exp Brain Res; 2015 Apr; 233(4):1069-78. PubMed ID: 25537471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task.
    Popovich C; Staines WR
    Behav Brain Res; 2015 Mar; 281():267-75. PubMed ID: 25549856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greater aerobic fitness is associated with more efficient inhibition of task-irrelevant information in preadolescent children.
    Kamijo K; Takeda Y; Takai Y; Haramura M
    Biol Psychol; 2015 Sep; 110():68-74. PubMed ID: 26213125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise practice associates with different brain rhythmic patterns during vigilance.
    Luque-Casado A; Ciria LF; Sanabria D; Perakakis P
    Physiol Behav; 2020 Oct; 224():113033. PubMed ID: 32598939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship of age and cardiovascular fitness to cognitive and motor processes.
    Hillman CH; Weiss EP; Hagberg JM; Hatfield BD
    Psychophysiology; 2002 May; 39(3):303-12. PubMed ID: 12212649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.