These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 26694849)
1. Mitochondrial Coupling and Contractile Efficiency in Humans with High and Low V˙O2peaks. Layec G; Bringard A; Le Fur Y; Micallef JP; Vilmen C; Perrey S; Cozzone PJ; Bendahan D Med Sci Sports Exerc; 2016 May; 48(5):811-21. PubMed ID: 26694849 [TBL] [Abstract][Full Text] [Related]
2. Elevated energy coupling and aerobic capacity improves exercise performance in endurance-trained elderly subjects. Conley KE; Jubrias SA; Cress ME; Esselman PC Exp Physiol; 2013 Apr; 98(4):899-907. PubMed ID: 23204291 [TBL] [Abstract][Full Text] [Related]
3. Exercise efficiency is reduced by mitochondrial uncoupling in the elderly. Conley KE; Jubrias SA; Cress ME; Esselman P Exp Physiol; 2013 Mar; 98(3):768-77. PubMed ID: 23085769 [TBL] [Abstract][Full Text] [Related]
4. Opposite effects of hyperoxia on mitochondrial and contractile efficiency in human quadriceps muscles. Layec G; Bringard A; Le Fur Y; Micallef JP; Vilmen C; Perrey S; Cozzone PJ; Bendahan D Am J Physiol Regul Integr Comp Physiol; 2015 Apr; 308(8):R724-33. PubMed ID: 25695290 [TBL] [Abstract][Full Text] [Related]
5. The slow components of phosphocreatine and pulmonary oxygen uptake can be dissociated during heavy exercise according to training status. Layec G; Bringard A; Yashiro K; Le Fur Y; Vilmen C; Micallef JP; Perrey S; Cozzone PJ; Bendahan D Exp Physiol; 2012 Aug; 97(8):955-69. PubMed ID: 22496500 [TBL] [Abstract][Full Text] [Related]
6. Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals. Befroy DE; Petersen KF; Dufour S; Mason GF; Rothman DL; Shulman GI Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16701-6. PubMed ID: 18936488 [TBL] [Abstract][Full Text] [Related]
7. Large energetic adaptations of elderly muscle to resistance and endurance training. Jubrias SA; Esselman PC; Price LB; Cress ME; Conley KE J Appl Physiol (1985); 2001 May; 90(5):1663-70. PubMed ID: 11299253 [TBL] [Abstract][Full Text] [Related]
8. Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension. Cannon DT; Bimson WE; Hampson SA; Bowen TS; Murgatroyd SR; Marwood S; Kemp GJ; Rossiter HB J Physiol; 2014 Dec; 592(23):5287-300. PubMed ID: 25281731 [TBL] [Abstract][Full Text] [Related]
9. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. Jacobs RA; Lundby C J Appl Physiol (1985); 2013 Feb; 114(3):344-50. PubMed ID: 23221957 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial function and oxygen supply in normal and in chronically ischemic muscle: a combined 31P magnetic resonance spectroscopy and near infrared spectroscopy study in vivo. Kemp GJ; Roberts N; Bimson WE; Bakran A; Harris PL; Gilling-Smith GL; Brennan J; Rankin A; Frostick SP J Vasc Surg; 2001 Dec; 34(6):1103-10. PubMed ID: 11743568 [TBL] [Abstract][Full Text] [Related]
11. Maximal strength training increases muscle force generating capacity and the anaerobic ATP synthesis flux without altering the cost of contraction in elderly. Berg OK; Kwon OS; Hureau TJ; Clifton HL; Thurston T; Le Fur Y; Jeong EK; Amann M; Richardson RS; Trinity JD; Wang E; Layec G Exp Gerontol; 2018 Oct; 111():154-161. PubMed ID: 30031838 [TBL] [Abstract][Full Text] [Related]
12. Oxidative ATP synthesis in human quadriceps declines during 4 minutes of maximal contractions. Bartlett MF; Fitzgerald LF; Nagarajan R; Hiroi Y; Kent JA J Physiol; 2020 May; 598(10):1847-1863. PubMed ID: 32045011 [TBL] [Abstract][Full Text] [Related]
14. A submaximal test for the assessment of knee extensor endurance capacity. De Ruiter CJ; Mallee MI; Leloup LE; De Haan A Med Sci Sports Exerc; 2014 Feb; 46(2):398-406. PubMed ID: 23877376 [TBL] [Abstract][Full Text] [Related]
15. Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle. Daussin FN; Zoll J; Ponsot E; Dufour SP; Doutreleau S; Lonsdorfer E; Ventura-Clapier R; Mettauer B; Piquard F; Geny B; Richard R J Appl Physiol (1985); 2008 May; 104(5):1436-41. PubMed ID: 18292295 [TBL] [Abstract][Full Text] [Related]
16. Dissociating external power from intramuscular exercise intensity during intermittent bilateral knee-extension in humans. Davies MJ; Benson AP; Cannon DT; Marwood S; Kemp GJ; Rossiter HB; Ferguson C J Physiol; 2017 Nov; 595(21):6673-6686. PubMed ID: 28776675 [TBL] [Abstract][Full Text] [Related]
17. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: implications for exercise performance. Fiorenza M; Lemminger AK; Marker M; Eibye K; Iaia FM; Bangsbo J; Hostrup M FASEB J; 2019 Aug; 33(8):8976-8989. PubMed ID: 31136218 [TBL] [Abstract][Full Text] [Related]
18. Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training. Montero D; Cathomen A; Jacobs RA; Flück D; de Leur J; Keiser S; Bonne T; Kirk N; Lundby AK; Lundby C J Physiol; 2015 Oct; 593(20):4677-88. PubMed ID: 26282186 [TBL] [Abstract][Full Text] [Related]
19. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms. Zoladz JA; Korzeniewski B; Grassi B J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492 [TBL] [Abstract][Full Text] [Related]
20. Reduced efficiency, but increased fat oxidation, in mitochondria from human skeletal muscle after 24-h ultraendurance exercise. Fernström M; Bakkman L; Tonkonogi M; Shabalina IG; Rozhdestvenskaya Z; Mattsson CM; Enqvist JK; Ekblom B; Sahlin K J Appl Physiol (1985); 2007 May; 102(5):1844-9. PubMed ID: 17234801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]