These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 26694849)
21. Exercise over-stress and maximal muscle oxidative metabolism: a 31P magnetic resonance spectroscopy case report. Newcomer BR; Sirikul B; Hunter GR; Larson-Meyer E; Bamman M Br J Sports Med; 2005 May; 39(5):302-6. PubMed ID: 15849297 [TBL] [Abstract][Full Text] [Related]
22. Muscle phosphocreatine and pulmonary oxygen uptake kinetics in children at the onset and offset of moderate intensity exercise. Barker AR; Welsman JR; Fulford J; Welford D; Williams CA; Armstrong N Eur J Appl Physiol; 2008 Apr; 102(6):727-38. PubMed ID: 18172674 [TBL] [Abstract][Full Text] [Related]
23. Low-volume muscle endurance training prevents decrease in muscle oxidative and endurance function during 21-day forearm immobilization. Homma T; Hamaoka T; Murase N; Osada T; Murakami M; Kurosawa Y; Kitahara A; Ichimura S; Yashiro K; Katsumura T Acta Physiol (Oxf); 2009 Dec; 197(4):313-20. PubMed ID: 19438844 [TBL] [Abstract][Full Text] [Related]
24. Does oxidative capacity affect energy cost? An in vivo MR investigation of skeletal muscle energetics. Layec G; Bringard A; Vilmen C; Micallef JP; Le Fur Y; Perrey S; Cozzone PJ; Bendahan D Eur J Appl Physiol; 2009 May; 106(2):229-42. PubMed ID: 19255774 [TBL] [Abstract][Full Text] [Related]
25. Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function. Layec G; Gifford JR; Trinity JD; Hart CR; Garten RS; Park SY; Le Fur Y; Jeong EK; Richardson RS Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E358-66. PubMed ID: 27302751 [TBL] [Abstract][Full Text] [Related]
26. Increased oxygen extraction and mitochondrial protein expression after small muscle mass endurance training. Skattebo Ø; Capelli C; Rud B; Auensen M; Calbet JAL; Hallén J Scand J Med Sci Sports; 2020 Sep; 30(9):1615-1631. PubMed ID: 32403173 [TBL] [Abstract][Full Text] [Related]
27. Evidence of a metabolic reserve in the skeletal muscle of elderly people. Layec G; Trinity JD; Hart CR; Le Fur Y; Sorensen JR; Jeong EK; Richardson RS Aging (Albany NY); 2016 Nov; 9(1):52-67. PubMed ID: 27824313 [TBL] [Abstract][Full Text] [Related]
28. Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle. Fernström M; Tonkonogi M; Sahlin K J Physiol; 2004 Feb; 554(Pt 3):755-63. PubMed ID: 14634202 [TBL] [Abstract][Full Text] [Related]
29. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574 [TBL] [Abstract][Full Text] [Related]
30. Skeletal Muscle Mitochondrial Adaptations to Maximal Strength Training in Older Adults. Berg OK; Kwon OS; Hureau TJ; Clifton HL; Thurston TS; Le Fur Y; Jeong EK; Trinity JD; Richardson RS; Wang E; Layec G J Gerontol A Biol Sci Med Sci; 2020 Nov; 75(12):2269-2277. PubMed ID: 32253421 [TBL] [Abstract][Full Text] [Related]
31. Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. McKay BR; Paterson DH; Kowalchuk JM J Appl Physiol (1985); 2009 Jul; 107(1):128-38. PubMed ID: 19443744 [TBL] [Abstract][Full Text] [Related]
32. Skeletal muscle metabolism in endurance athletes with near-infrared spectroscopy. Brizendine JT; Ryan TE; Larson RD; McCully KK Med Sci Sports Exerc; 2013 May; 45(5):869-75. PubMed ID: 23247709 [TBL] [Abstract][Full Text] [Related]
33. Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans. Forbes SC; Slade JM; Meyer RA Appl Physiol Nutr Metab; 2008 Dec; 33(6):1124-31. PubMed ID: 19088770 [TBL] [Abstract][Full Text] [Related]
34. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Pesta D; Hoppel F; Macek C; Messner H; Faulhaber M; Kobel C; Parson W; Burtscher M; Schocke M; Gnaiger E Am J Physiol Regul Integr Comp Physiol; 2011 Oct; 301(4):R1078-87. PubMed ID: 21775647 [TBL] [Abstract][Full Text] [Related]
35. Postexercise heart rate recovery accelerates in strength-trained athletes. Otsuki T; Maeda S; Iemitsu M; Saito Y; Tanimura Y; Sugawara J; Ajisaka R; Miyauchi T Med Sci Sports Exerc; 2007 Feb; 39(2):365-70. PubMed ID: 17277602 [TBL] [Abstract][Full Text] [Related]
36. In vivo evidence of an age-related increase in ATP cost of contraction in the plantar flexor muscles. Layec G; Trinity JD; Hart CR; Kim SE; Groot HJ; Le Fur Y; Sorensen JR; Jeong EK; Richardson RS Clin Sci (Lond); 2014 Apr; 126(8):581-92. PubMed ID: 24224517 [TBL] [Abstract][Full Text] [Related]
37. High-intensity interval training speeds the adjustment of pulmonary O2 uptake, but not muscle deoxygenation, during moderate-intensity exercise transitions initiated from low and elevated baseline metabolic rates. Williams AM; Paterson DH; Kowalchuk JM J Appl Physiol (1985); 2013 Jun; 114(11):1550-62. PubMed ID: 23519229 [TBL] [Abstract][Full Text] [Related]