These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 26694868)
1. Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment. Mahapatra I; Sun TY; Clark JR; Dobson PJ; Hungerbuehler K; Owen R; Nowack B; Lead J J Nanobiotechnology; 2015 Dec; 13():93. PubMed ID: 26694868 [TBL] [Abstract][Full Text] [Related]
2. Probabilistic modeling of the flows and environmental risks of nano-silica. Wang Y; Kalinina A; Sun T; Nowack B Sci Total Environ; 2016 Mar; 545-546():67-76. PubMed ID: 26745294 [TBL] [Abstract][Full Text] [Related]
3. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717 [TBL] [Abstract][Full Text] [Related]
4. Hydrophilic polymer monolithic capillary microextraction online coupled to ICPMS for the determination of carboxyl group-containing gold nanoparticles in environmental waters. Zhang L; Chen B; He M; Liu X; Hu B Anal Chem; 2015 Feb; 87(3):1789-96. PubMed ID: 25572871 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Asharani PV; Lianwu Y; Gong Z; Valiyaveettil S Nanotoxicology; 2011 Mar; 5(1):43-54. PubMed ID: 21417687 [TBL] [Abstract][Full Text] [Related]
6. An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO₂ nanoparticles in UK field scenarios. Johnson AC; Bowes MJ; Crossley A; Jarvie HP; Jurkschat K; Jürgens MD; Lawlor AJ; Park B; Rowland P; Spurgeon D; Svendsen C; Thompson IP; Barnes RJ; Williams RJ; Xu N Sci Total Environ; 2011 Jun; 409(13):2503-10. PubMed ID: 21501856 [TBL] [Abstract][Full Text] [Related]
7. Probabilistic modelling of nanobiomaterial release from medical applications into the environment. Hauser M; Nowack B Environ Int; 2021 Jan; 146():106184. PubMed ID: 33137704 [TBL] [Abstract][Full Text] [Related]
8. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling. Wang Y; Deng L; Caballero-Guzman A; Nowack B Nanotoxicology; 2016 Dec; 10(10):1545-1554. PubMed ID: 27781563 [TBL] [Abstract][Full Text] [Related]
9. Challenges in assessing release, exposure and fate of silver nanoparticles within the UK environment. Whiteley CM; Dalla Valle M; Jones KC; Sweetman AJ Environ Sci Process Impacts; 2013 Oct; 15(11):2050-8. PubMed ID: 24056694 [TBL] [Abstract][Full Text] [Related]
10. An ultra-sensitive colorimetric Hg(2+)-sensing assay based on DNAzyme-modified Au NP aggregation, MNPs and an endonuclease. Li C; Dai P; Rao X; Shao L; Cheng G; He P; Fang Y Talanta; 2015 Jan; 132():463-8. PubMed ID: 25476332 [TBL] [Abstract][Full Text] [Related]
11. Development of environmental fate models for engineered nanoparticles--a case study of TiO2 nanoparticles in the Rhine River. Praetorius A; Scheringer M; Hungerbühler K Environ Sci Technol; 2012 Jun; 46(12):6705-13. PubMed ID: 22502632 [TBL] [Abstract][Full Text] [Related]
12. Analysis of metallic nanoparticles and their ionic counterparts in complex matrix by reversed-phase liquid chromatography coupled to ICP-MS. Yang Y; Luo L; Li HP; Wang Q; Yang ZG; Qu ZP; Ding R Talanta; 2018 May; 182():156-163. PubMed ID: 29501135 [TBL] [Abstract][Full Text] [Related]
13. An environmental risk assessment for oseltamivir (Tamiflu) for sewage works and surface waters under seasonal-influenza- and pandemic-use conditions. Straub JO Ecotoxicol Environ Saf; 2009 Sep; 72(6):1625-34. PubMed ID: 19560203 [TBL] [Abstract][Full Text] [Related]
14. Visual and colorimetric detection of p-aminophenol in environmental water and human urine samples based on anisotropic growth of Ag nanoshells on Au nanorods. Lin T; Li Z; Song Z; Chen H; Guo L; Fu F; Wu Z Talanta; 2016; 148():62-8. PubMed ID: 26653424 [TBL] [Abstract][Full Text] [Related]
15. Environmental risk assessment of hydrotropes in the United States, Europe, and Australia. Stanton K; Tibazarwa C; Certa H; Greggs W; Hillebold D; Jovanovich L; Woltering D; Sedlak R Integr Environ Assess Manag; 2010 Jan; 6(1):155-63. PubMed ID: 19558203 [TBL] [Abstract][Full Text] [Related]
16. Soil-pore water distribution of silver and gold engineered nanoparticles in undisturbed soils under unsaturated conditions. Tavares DS; Rodrigues SM; Cruz N; Carvalho C; Teixeira T; Carvalho L; Duarte AC; Trindade T; Pereira E; Römkens PF Chemosphere; 2015 Oct; 136():86-94. PubMed ID: 25965160 [TBL] [Abstract][Full Text] [Related]
17. Silver nanoparticles: behaviour and effects in the aquatic environment. Fabrega J; Luoma SN; Tyler CR; Galloway TS; Lead JR Environ Int; 2011 Feb; 37(2):517-31. PubMed ID: 21159383 [TBL] [Abstract][Full Text] [Related]
18. Approach on environmental risk assessment of nanosilver released from textiles. Voelker D; Schlich K; Hohndorf L; Koch W; Kuehnen U; Polleichtner C; Kussatz C; Hund-Rinke K Environ Res; 2015 Jul; 140():661-72. PubMed ID: 26073205 [TBL] [Abstract][Full Text] [Related]
19. Effect of Phosphate, Sulfate, Arsenate, and Pyrite on Surface Transformations and Chemical Retention of Gold Nanoparticles (Au-NPs) in Partially Saturated Soil Columns. Yecheskel Y; Dror I; Berkowitz B Environ Sci Technol; 2019 Nov; 53(22):13071-13080. PubMed ID: 31618570 [TBL] [Abstract][Full Text] [Related]
20. Theranostic potential of gold nanoparticle-protein agglomerates. Sanpui P; Paul A; Chattopadhyay A Nanoscale; 2015 Nov; 7(44):18411-23. PubMed ID: 26508277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]