These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26695026)

  • 1. ATPase Activity Measurements by an Enzyme-Coupled Spectrophotometric Assay.
    Sehgal P; Olesen C; Møller JV
    Methods Mol Biol; 2016; 1377():105-9. PubMed ID: 26695026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New enzymatic assay for the AKR1C enzymes.
    Beranič N; Stefane B; Brus B; Gobec S; Rižner TL
    Chem Biol Interact; 2013 Feb; 202(1-3):204-9. PubMed ID: 23261716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrophotometric determination of oxidized and reduced pyridine nucleotides in erythrocytes using a single extraction procedure.
    Zerez CR; Lee SJ; Tanaka KR
    Anal Biochem; 1987 Aug; 164(2):367-73. PubMed ID: 3674385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences between the reactivities of two pyridine nucleotides in the rapid reduction process and the reoxidation process of adrenodoxin reductase.
    Sugiyama T; Miura R; Yamano T
    J Biochem; 1979 Jul; 86(1):213-23. PubMed ID: 39065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Semi-High-Throughput Adaptation of the NADH-Coupled ATPase Assay for Screening Small Molecule Inhibitors.
    Radnai L; Stremel RF; Sellers JR; Rumbaugh G; Miller CA
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31475972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and NaK-ATPase activity.
    Scharschmidt BF; Keeffe EB; Blankenship NM; Ockner RK
    J Lab Clin Med; 1979 May; 93(5):790-9. PubMed ID: 219124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microplate-based kinetic method for assay of mitochondrial NADH-- and succinate--cytochrome c reductase activities.
    Joshi AK; Raju N; Rajini PS
    Anal Biochem; 2011 Aug; 415(2):209-11. PubMed ID: 21545784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thin-Layer Chromatography and Real-Time Coupled Assays to Measure ATP Hydrolysis.
    Sausen CW; Rogers CM; Bochman ML
    Methods Mol Biol; 2019; 1999():245-253. PubMed ID: 31127581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pyridine nucleotides on ATP synthesis and hydrolysis by the mitochondrial ATPase.
    Baizabal-Aguirre VM; Behrens MI; Gómez-Puyou A; Tuena de Gómez-Puyou M
    Biochem Int; 1990 Nov; 22(4):677-84. PubMed ID: 2150308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrophotometric activity microassay for pure and recombinant cytochrome P450-type nitric oxide reductase.
    Garny S; Verschoor J; Gardiner N; Jordaan J
    Anal Biochem; 2014 Feb; 447():23-9. PubMed ID: 24239572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic-spectrophotometric determination of paraquat in urine samples: a method based on its toxic mechanism.
    de Almeida RM; Yonamine M
    Toxicol Mech Methods; 2010 Sep; 20(7):424-7. PubMed ID: 20524792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrophotometric assay of D-isoleucine using an artificially created D-amino acid dehydrogenase.
    Akita H; Imaizumi Y; Suzuki H; Doi K; Ohshima T
    Biotechnol Lett; 2014 Nov; 36(11):2245-8. PubMed ID: 24966047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrophotometric Assays for Measuring Hydroxypyruvate Reductase Activity.
    Liepman AH; Jaworski M; Ramirez-Lopez C
    Methods Mol Biol; 2024; 2792():77-81. PubMed ID: 38861079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid colorimetric determination of reduced and oxidized glutathione using an end point coupled enzymatic assay.
    Cappiello M; Peroni E; Lepore A; Moschini R; Del Corso A; Balestri F; Mura U
    Anal Bioanal Chem; 2013 Feb; 405(5):1779-85. PubMed ID: 23203508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of NADH stability using ultraviolet-visible spectrophotometric analysis and factorial design.
    Rover Júnior L; Fernandes JC; de Oliveira Neto G; Kubota LT; Katekawa E; Serrano SH
    Anal Biochem; 1998 Jun; 260(1):50-5. PubMed ID: 9648652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single extraction method for the spectrophotometric quantification of oxidized and reduced pyridine nucleotides in erythrocytes.
    Wagner TC; Scott MD
    Anal Biochem; 1994 Nov; 222(2):417-26. PubMed ID: 7864367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A continuous spectrophotometric assay for simultaneous measurement of calcium uptake and ATP hydrolysis in sarcoplasmic reticulum.
    Karon BS; Nissen ER; Voss J; Thomas DD
    Anal Biochem; 1995 May; 227(2):328-33. PubMed ID: 7573954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Transhydrogenase as an additional site of energy accumulation in the E. coli respiratory chain].
    Chetkauskaite AV; Grinius LL
    Biokhimiia; 1979 Jun; 44(6):1101-9. PubMed ID: 37931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrophotometric pyrophosphate assay of 2',5'-oligoadenylate synthetase.
    Justesen J; Kjeldgaard NO
    Anal Biochem; 1992 Nov; 207(1):90-3. PubMed ID: 1336938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.