BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26695098)

  • 1. Rapid Mobilization of Noncrystalline U(IV) Coupled with FeS Oxidation.
    Bi Y; Stylo M; Bernier-Latmani R; Hayes KF
    Environ Sci Technol; 2016 Feb; 50(3):1403-11. PubMed ID: 26695098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface passivation limited UO2 oxidative dissolution in the presence of FeS.
    Bi Y; Hayes KF
    Environ Sci Technol; 2014 Nov; 48(22):13402-11. PubMed ID: 25322064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uranium(VI) reduction by iron(II) monosulfide mackinawite.
    Hyun SP; Davis JA; Sun K; Hayes KF
    Environ Sci Technol; 2012 Mar; 46(6):3369-76. PubMed ID: 22316012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Iron Sulfide Phases in the Stability of Noncrystalline Tetravalent Uranium in Sediments.
    Loreggian L; Sorwat J; Byrne JM; Kappler A; Bernier-Latmani R
    Environ Sci Technol; 2020 Apr; 54(8):4840-4846. PubMed ID: 32167294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-FeS inhibits UO2 reoxidation under varied oxic conditions.
    Bi Y; Hayes KF
    Environ Sci Technol; 2014; 48(1):632-40. PubMed ID: 24328252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative reactivity of biogenic and chemogenic uraninite and biogenic noncrystalline U(IV).
    Cerrato JM; Ashner MN; Alessi DS; Lezama-Pacheco JS; Bernier-Latmani R; Bargar JR; Giammar DE
    Environ Sci Technol; 2013 Sep; 47(17):9756-63. PubMed ID: 23906226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uranium(VI) interactions with mackinawite in the presence and absence of bicarbonate and oxygen.
    Gallegos TJ; Fuller CC; Webb SM; Betterton W
    Environ Sci Technol; 2013 Jul; 47(13):7357-64. PubMed ID: 23742708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of iron sulfides on abiotic oxidation of UO2 by nitrite and dissolved oxygen in natural sediments.
    Carpenter J; Bi Y; Hayes KF
    Environ Sci Technol; 2015 Jan; 49(2):1078-85. PubMed ID: 25525972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abiotic reductive immobilization of U(VI) by biogenic mackinawite.
    Veeramani H; Scheinost AC; Monsegue N; Qafoku NP; Kukkadapu R; Newville M; Lanzirotti A; Pruden A; Murayama M; Hochella MF
    Environ Sci Technol; 2013 Mar; 47(5):2361-9. PubMed ID: 23373896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition.
    Niazi NK; Burton ED
    Environ Pollut; 2016 Nov; 218():111-117. PubMed ID: 27552044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term in situ oxidation of biogenic uraninite in an alluvial aquifer: impact of dissolved oxygen and calcium.
    Lezama-Pacheco JS; Cerrato JM; Veeramani H; Alessi DS; Suvorova E; Bernier-Latmani R; Giammar DE; Long PE; Williams KH; Bargar JR
    Environ Sci Technol; 2015 Jun; 49(12):7340-7. PubMed ID: 26001126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-Induced U Mobilization from Chemogenic Uraninite and Biogenic Noncrystalline U(IV) under Anoxic Conditions.
    Chardi KJ; Satpathy A; Schenkeveld WDC; Kumar N; Noël V; Kraemer SM; Giammar DE
    Environ Sci Technol; 2022 May; 56(10):6369-6379. PubMed ID: 35522992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Desulfovibrio vulgaris when respiring U(VI) and characterization of biogenic uraninite.
    Zhou C; Vannela R; Hyun SP; Hayes KF; Rittmann BE
    Environ Sci Technol; 2014 Jun; 48(12):6928-37. PubMed ID: 24871825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Uranium Reduction and Immobilization in Desulfovibrio vulgaris Biofilms.
    Stylo M; Neubert N; Roebbert Y; Weyer S; Bernier-Latmani R
    Environ Sci Technol; 2015 Sep; 49(17):10553-61. PubMed ID: 26251962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray absorption and X-ray photoelectron spectroscopic study of arsenic mobilization during mackinawite (FeS) oxidation.
    Jeong HY; Han YS; Hayes KF
    Environ Sci Technol; 2010 Feb; 44(3):955-61. PubMed ID: 20041638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray absorption spectroscopy studies of reactions of technetium, uranium and neptunium with mackinawite.
    Livens FR; Jones MJ; Hynes AJ; Charnock JM; Mosselmans JF; Hennig C; Steele H; Collison D; Vaughan DJ; Pattrick RA; Reed WA; Moyes LN
    J Environ Radioact; 2004; 74(1-3):211-9. PubMed ID: 15063549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox Interactions of Tc(VII), U(VI), and Np(V) with Microbially Reduced Biotite and Chlorite.
    Brookshaw DR; Pattrick RA; Bots P; Law GT; Lloyd JR; Mosselmans JF; Vaughan DJ; Dardenne K; Morris K
    Environ Sci Technol; 2015 Nov; 49(22):13139-48. PubMed ID: 26488884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous reduction of arsenic(V) and uranium(VI) by mackinawite: role of uranyl arsenate precipitate formation.
    Troyer LD; Tang Y; Borch T
    Environ Sci Technol; 2014 Dec; 48(24):14326-34. PubMed ID: 25383895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction of U(VI) with titanium-substituted magnetite: influence of Ti on U(IV) speciation.
    Latta DE; Pearce CI; Rosso KM; Kemner KM; Boyanov MI
    Environ Sci Technol; 2013 May; 47(9):4121-30. PubMed ID: 23597442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative separation of monomeric U(IV) from UO2 in products of U(VI) reduction.
    Alessi DS; Uster B; Veeramani H; Suvorova EI; Lezama-Pacheco JS; Stubbs JE; Bargar JR; Bernier-Latmani R
    Environ Sci Technol; 2012 Jun; 46(11):6150-7. PubMed ID: 22540966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.