These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26695194)

  • 21. Sorption of silicates on goethite, hematite, and magnetite: experiments and modelling.
    Jordan N; Marmier N; Lomenech C; Giffaut E; Ehrhardt JJ
    J Colloid Interface Sci; 2007 Aug; 312(2):224-9. PubMed ID: 17467724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biogenic Iron-Rich Filaments in the Quartz Veins in the Uppermost Ediacaran Qigebulake Formation, Aksu Area, Northwestern Tarim Basin, China: Implications for Iron Oxidizers in Subseafloor Hydrothermal Systems.
    Zhou X; Chen D; Tang D; Dong S; Guo C; Guo Z; Zhang Y
    Astrobiology; 2015 Jul; 15(7):523-37. PubMed ID: 26168395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial dissolution of hematite and associated cellular fossilization by reduced iron phases: a study of ancient microbe-mineral surface interactions.
    Kolo K; Konhauser K; Krumbein WE; Ingelgem YV; Hubin A; Claeys P
    Astrobiology; 2009 Oct; 9(8):777-96. PubMed ID: 19845448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe (III) (hydr)oxides.
    Zhengji Y
    J Environ Radioact; 2010 Sep; 101(9):700-5. PubMed ID: 20471727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.
    Latta DE; Bachman JE; Scherer MM
    Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetite formation from ferrihydrite by hyperthermophilic archaea from Endeavour Segment, Juan de Fuca Ridge hydrothermal vent chimneys.
    Lin TJ; Breves EA; Dyar MD; Ver Eecke HC; Jamieson JW; Holden JF
    Geobiology; 2014 May; 12(3):200-11. PubMed ID: 24612368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain.
    Preston LJ; Shuster J; Fernández-Remolar D; Banerjee NR; Osinski GR; Southam G
    Geobiology; 2011 May; 9(3):233-49. PubMed ID: 21443552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of microbial trichloroethylene dechlorination [corrected] by Fe (III) reduction depends on Fe mineralogy: a batch study using the bioaugmentation culture KB-1.
    Paul L; Herrmann S; Koch CB; Philips J; Smolders E
    Water Res; 2013 May; 47(7):2543-54. PubMed ID: 23490101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of aqueous Fe(II) on arsenate sorption on goethite and hematite.
    Catalano JG; Luo Y; Otemuyiwa B
    Environ Sci Technol; 2011 Oct; 45(20):8826-33. PubMed ID: 21899306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Weathering of post-impact hydrothermal deposits from the Haughton impact structure: implications for microbial colonization and biosignature preservation.
    Izawa MR; Banerjee NR; Osinski GR; Flemming RL; Parnell J; Cockell CS
    Astrobiology; 2011; 11(6):537-50. PubMed ID: 21767151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the biogenicity of Fe-oxyhydroxide filaments in silicified low-temperature hydrothermal deposits: Implications for the identification of Fe-oxidizing bacteria in the rock record.
    Johannessen KC; McLoughlin N; Vullum PE; Thorseth IH
    Geobiology; 2020 Jan; 18(1):31-53. PubMed ID: 31532578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record.
    Campbell KA; Lynne BY; Handley KM; Jordan S; Farmer JD; Guido DM; Foucher F; Turner S; Perry RS
    Astrobiology; 2015 Oct; 15(10):858-82. PubMed ID: 26496526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mineralogy at Gusev Crater from the Mössbauer spectrometer on the Spirit Rover.
    Morris RV; Klingelhöfer G; Bernhardt B; Schröder C; Rodionov DS; De Souza PA; Yen A; Gellert R; Evlanov EN; Foh J; Kankeleit E; Gütlich P; Ming DW; Renz F; Wdowiak T; Squyres SW; Arvidson RE
    Science; 2004 Aug; 305(5685):833-6. PubMed ID: 15297666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hematite-coated microfossils: primary ecological fingerprint or taphonomic oddity of the Paleoproterozoic?
    Shapiro RS; Konhauser KO
    Geobiology; 2015 May; 13(3):209-24. PubMed ID: 25639940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of amorphous Fe(III) oxide transformation on the Fe(II)-mediated reduction of U(VI).
    Boland DD; Collins RN; Payne TE; Waite TD
    Environ Sci Technol; 2011 Feb; 45(4):1327-33. PubMed ID: 21210678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria.
    Miot J; Benzerara K; Obst M; Kappler A; Hegler F; Schädler S; Bouchez C; Guyot F; Morin G
    Appl Environ Microbiol; 2009 Sep; 75(17):5586-91. PubMed ID: 19592528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial processes during deposition and diagenesis of Banded Iron Formations.
    Dreher CL; Schad M; Robbins LJ; Konhauser KO; Kappler A; Joshi P
    Palaontol Z; 2021; 95(4):593-610. PubMed ID: 35034981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imaging of Vanadium in Microfossils: A New Potential Biosignature.
    Marshall CP; Olcott Marshall A; Aitken JB; Lai B; Vogt S; Breuer P; Steemans P; Lay PA
    Astrobiology; 2017 Nov; 17(11):1069-1076. PubMed ID: 28910135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hexagonal platelet-like magnetite as a biosignature of thermophilic iron-reducing bacteria and its applications to the exploration of the modern deep, hot biosphere and the emergence of iron-reducing bacteria in early precambrian oceans.
    Li YL
    Astrobiology; 2012 Dec; 12(12):1100-8. PubMed ID: 23145573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of extracellular minerals produced during dissimilatory Fe(III) and U(VI) reduction at 100 degrees C by Pyrobaculum islandicum.
    Kashefi K; Moskowitz BM; Lovley DR
    Geobiology; 2008 Mar; 6(2):147-54. PubMed ID: 18380877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.