BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26695392)

  • 1. Design of chemical space networks on the basis of Tversky similarity.
    Wu M; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2016 Jan; 30(1):1-12. PubMed ID: 26695392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures.
    Zhang B; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2015 Oct; 29(10):937-50. PubMed ID: 26419860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of bioactive chemical space networks generated using substructure- and fingerprint-based measures of molecular similarity.
    Zhang B; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2015 Jul; 29(7):595-608. PubMed ID: 26049785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lessons learned from the design of chemical space networks and opportunities for new applications.
    Vogt M; Stumpfe D; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2016 Mar; 30(3):191-208. PubMed ID: 26945865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical space visualization: transforming multidimensional chemical spaces into similarity-based molecular networks.
    de la Vega de León A; Bajorath J
    Future Med Chem; 2016 Sep; 8(14):1769-78. PubMed ID: 27572425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and characterization of chemical space networks for different compound data sets.
    Zwierzyna M; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2015 Feb; 29(2):113-25. PubMed ID: 25465052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of chemical space networks incorporating compound distance relationships.
    de la Vega de León A; Bajorath J
    F1000Res; 2016; 5():. PubMed ID: 28184279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracing compound pathways using chemical space networks.
    Kunimoto R; Vogt M; Bajorath J
    Medchemcomm; 2017 Feb; 8(2):376-384. PubMed ID: 30108753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualizing chemical space networks with RDKit and NetworkX.
    Scalfani VF; Patel VD; Fernandez AM
    J Cheminform; 2022 Dec; 14(1):87. PubMed ID: 36578091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximum common substructure-based Tversky index: an asymmetric hybrid similarity measure.
    Kunimoto R; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2016 Jul; 30(7):523-31. PubMed ID: 27515428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Context-sensitive network-based disease genetics prediction and its implications in drug discovery.
    Chen Y; Xu R
    Bioinformatics; 2017 Apr; 33(7):1031-1039. PubMed ID: 28062449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks.
    Kunimoto R; Bajorath J
    J Comput Aided Mol Des; 2017 Sep; 31(9):779-788. PubMed ID: 28871390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From bird's eye views to molecular communities: two-layered visualization of structure-activity relationships in large compound data sets.
    Kayastha S; Kunimoto R; Horvath D; Varnek A; Bajorath J
    J Comput Aided Mol Des; 2017 Nov; 31(11):961-977. PubMed ID: 28986673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charting, navigating, and populating natural product chemical space for drug discovery.
    Lachance H; Wetzel S; Kumar K; Waldmann H
    J Med Chem; 2012 Jul; 55(13):5989-6001. PubMed ID: 22537178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress with modeling activity landscapes in drug discovery.
    Vogt M
    Expert Opin Drug Discov; 2018 Jul; 13(7):605-615. PubMed ID: 29656681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simple Representation of Three-Dimensional Molecular Structure.
    Axen SD; Huang XP; Cáceres EL; Gendelev L; Roth BL; Keiser MJ
    J Med Chem; 2017 Sep; 60(17):7393-7409. PubMed ID: 28731335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration of the topology of chemical spaces with network measures.
    Krein MP; Sukumar N
    J Phys Chem A; 2011 Nov; 115(45):12905-18. PubMed ID: 21882847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactivity-guided navigation of chemical space.
    Bon RS; Waldmann H
    Acc Chem Res; 2010 Aug; 43(8):1103-14. PubMed ID: 20481515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similarity-potency trees: a method to search for SAR information in compound data sets and derive SAR rules.
    Wawer M; Bajorath J
    J Chem Inf Model; 2010 Aug; 50(8):1395-409. PubMed ID: 20726598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncovering the properties of energy-weighted conformation space networks with a hydrophobic-hydrophilic model.
    Lai Z; Su J; Chen W; Wang C
    Int J Mol Sci; 2009 Apr; 10(4):1808-1823. PubMed ID: 19468340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.